|
import os |
|
import pandas as pd |
|
|
|
from langchain_openai import ChatOpenAI |
|
|
|
from langchain.agents import AgentExecutor |
|
from langchain.agents.agent_types import AgentType |
|
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent, create_csv_agent |
|
|
|
import chainlit as cl |
|
|
|
from deep_translator import GoogleTranslator |
|
|
|
def create_agent(filename: str): |
|
""" |
|
Create an agent that can access and use a large language model (LLM). |
|
|
|
Args: |
|
filename: The path to the CSV file that contains the data. |
|
|
|
Returns: |
|
An agent that can access and use the LLM. |
|
""" |
|
|
|
|
|
os.environ['OPENAI_API_KEY'] = os.environ['OPENAI_API_KEY'] |
|
llm = ChatOpenAI(temperature=0, model="gpt-4o-2024-05-13") |
|
|
|
|
|
df = pd.read_csv(filename) |
|
|
|
|
|
return create_csv_agent(llm, filename, verbose=False, allow_dangerous_code=True, handle_parsing_errors=True, agent_type=AgentType.OPENAI_FUNCTIONS) |
|
|
|
|
|
async def LLMAnswer(message): |
|
agent = create_agent("./public/surveyia.csv") |
|
cb = cl.AsyncLangchainCallbackHandler() |
|
try: |
|
res = await agent.acall("Réponds en langue française à la question suivante : " + message.content, callbacks=[cb]) |
|
await cl.Message(author="COPILOT",content=GoogleTranslator(source='auto', target='fr').translate(res['output'])).send() |
|
except ValueError as e: |
|
res = str(e) |
|
resArray = res.split(":") |
|
ans = '' |
|
if str(res).find('parsing') != -1: |
|
for i in range(2,len(resArray)): |
|
ans += resArray[i] |
|
await cl.Message(author="COPILOT",content=ans.replace("`","")).send() |
|
else: |
|
await cl.Message(author="COPILOT",content="Reformulez votre requête, s'il vous plait 😃").send() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|