Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,038 Bytes
4aef500 c27c631 4aef500 2bcd76f 6bf10a4 4aef500 2bcd76f cd66976 c27c631 4aef500 c27c631 f603f74 323893f f603f74 2bcd76f c27c631 f603f74 c27c631 2bcd76f f603f74 902da82 c27c631 902da82 c27c631 cd66976 f603f74 6bf10a4 f603f74 2bcd76f f603f74 4aef500 6e47eb5 6bf10a4 4aef500 6e47eb5 4aef500 6bf10a4 4aef500 6e47eb5 4aef500 6bf10a4 4aef500 323893f 4fd7636 4aef500 4fd7636 4aef500 6bf10a4 4aef500 11dc9b2 f603f74 6bf10a4 d10cca1 cd66976 d10cca1 cd66976 2bcd76f f603f74 d10cca1 4aef500 99f3938 4aef500 c27c631 11dc9b2 c27c631 11dc9b2 c27c631 2bcd76f 4aef500 c27c631 d10cca1 c27c631 4aef500 2bcd76f 4aef500 6bf10a4 c27c631 4aef500 6e47eb5 4aef500 323893f 6bf10a4 4aef500 323893f 4aef500 6e47eb5 c27c631 6bf10a4 4aef500 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
import torch
import duckdb
import spaces
import lancedb
import gradio as gr
import pandas as pd
import pyarrow as pa
from langchain import hub
from langsmith import traceable
from sentence_transformers import SentenceTransformer
from langchain_huggingface.llms import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
# Height of the Tabs Text Area
TAB_LINES = 8
#----------CONNECT TO DATABASE----------
md_token = os.getenv('MD_TOKEN')
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
#---------------------------------------
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
else:
device = torch.device("cpu")
print("Using CPU")
#---------------------------------------
#--------------LanceDB-------------
lance_db = lancedb.connect(
uri=os.getenv('lancedb_uri'),
api_key=os.getenv('lancedb_api_key'),
region=os.getenv('lancedb_region')
)
lance_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32())),
pa.field("sql-query", pa.utf8())
])
try:
table = lance_db.create_table(name="SQL-Queries", schema=lance_schema)
except:
table = lance_db.open_table(name="SQL-Queries")
#---------------------------------------
#-------LOAD HUGGINGFACE PIPELINE-------
tokenizer = AutoTokenizer.from_pretrained("defog/llama-3-sqlcoder-8b")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type= "nf4")
model = AutoModelForCausalLM.from_pretrained("defog/llama-3-sqlcoder-8b", quantization_config=quantization_config,
device_map="auto", torch_dtype=torch.bfloat16)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=1024, return_full_text=False)
hf = HuggingFacePipeline(pipeline=pipe)
#---------------------------------------
#-----LOAD PROMPT FROM LANCHAIN HUB-----
prompt = hub.pull("sql-agent-prompt")
#---------------------------------------
#-----LOAD EMBEDDING MODEL-----
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
#---------------------------------------
#--------------ALL UTILS----------------
# Get Databases
def get_schemas():
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
# Get Tables
def get_tables(schema_name):
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_tables(schema_name):
tables = get_tables(schema_name)
return gr.update(choices=tables)
# Get Schema
def get_table_schema(table):
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
parent_database = result.iloc[0,1]
schema_name = result.iloc[0,2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return ddl_create
# Get Prompt
def get_prompt(schema, query_input):
return prompt.format(schema=schema, query_input=query_input)
@spaces.GPU(duration=60)
@traceable()
def generate_sql(prompt):
result = hf.invoke(prompt)
return result.strip()
@spaces.GPU(duration=10)
def embed_query(sql_query):
print(f'Creating Emebeddings {sql_query}')
if sql_query is not None:
embeddings = embedding_model.encode(sql_query, normalize_embeddings=True).tolist()
return embeddings
def log2lancedb(embeddings, sql_query):
data = [{
"sql-query": sql_query,
"vector": embeddings
}]
table.add(data)
print(f'Added to Lance DB.')
#---------------------------------------
# Generate SQL
def text2sql(table, query_input):
if table is None:
return {
table_schema: "",
input_prompt: "",
generated_query: "",
result_output:pd.DataFrame([{"error": "❌ Please Select Table, Schema.}"}])
}
schema = get_table_schema(table)
print(f'Schema Generated...')
prompt = get_prompt(schema, query_input)
print(f'Prompt Generated...')
try:
print(f'Generating SQL... {model.device}')
result = generate_sql(prompt)
print('SQL Generated...')
except Exception as e:
return {
table_schema: schema,
input_prompt: prompt,
generated_query: "",
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
try:
embeddings = embed_query(result)
log2lancedb(embeddings, result)
except Exception as e:
print("Error Generating and Logging Embeddings...")
print(e)
try:
query_result = conn.sql(result).df()
except Exception as e:
return {
table_schema: schema,
input_prompt: prompt,
generated_query: result,
result_output:pd.DataFrame([{"error": f"❌ Unable to get the SQL query based on the text. {e}"}])
}
return {
table_schema: schema,
input_prompt: prompt,
generated_query: result,
result_output:query_result
}
# Custom CSS styling
custom_css = """
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>Datajoi SQL Agent</strong>
<br>
<span style='font-size: 20px;'>Generate and Run SQL queries based on a given text for the dataset.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1, variant='panel'):
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Column(scale=2):
query_input = gr.Textbox(lines=5, label="Text Query", placeholder="Enter your text query here...")
with gr.Row():
with gr.Column(scale=7):
pass
with gr.Column(scale=1):
generate_query_button = gr.Button("Run Query", variant="primary")
with gr.Tabs():
with gr.Tab("Result"):
result_output = gr.DataFrame(label="Query Results", value=[], interactive=False)
with gr.Tab("SQL Query"):
generated_query = gr.Textbox(lines=TAB_LINES, label="Generated SQL Query", value="", interactive=False)
with gr.Tab("Prompt"):
input_prompt = gr.Textbox(lines=TAB_LINES, label="Input Prompt", value="", interactive=False)
with gr.Tab("Schema"):
table_schema = gr.Textbox(lines=TAB_LINES, label="Table Schema", value="", interactive=False)
schema_dropdown.change(update_tables, inputs=schema_dropdown, outputs=tables_dropdown)
generate_query_button.click(text2sql, inputs=[tables_dropdown, query_input], outputs=[table_schema, input_prompt, generated_query, result_output])
if __name__ == "__main__":
demo.launch()
|