File size: 7,223 Bytes
4a118a7 4e001cd 4a118a7 80d5167 4a118a7 80d5167 4a118a7 80d5167 df535b0 80d5167 4a118a7 80d5167 4a118a7 80d5167 4a118a7 80d5167 bb7bc72 0f09491 4a118a7 80d5167 4a118a7 4e001cd 4a118a7 80d5167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import streamlit as st
import re
import os
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import WebBaseLoader
from langchain.embeddings import SentenceTransformerEmbedding
from langchain.vectorstores import Chroma
from langchain.prompts import load_prompt
from langchain.chat_models import ChatGroq
from langchain.output_parsers import StrOutputParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.runnables import RunnablePassthrough
import torch
from sentence_transformers import SentenceTransformer
import bs4
# Sidebar Style with Multicolored Background
sidebar_bg_style = """
<style>
[data-testid="stSidebar"] {
background: linear-gradient(135deg, #ffafbd, #ffc3a0, #2193b0, #6dd5ed);
}
</style>
"""
st.markdown(sidebar_bg_style, unsafe_allow_html=True)
# Main Content Style with Multicolored Background
main_bg_style = """
<style>
.main .block-container {
background: linear-gradient(135deg, #ff9a9e, #fad0c4, #fbc2eb, #a18cd1);
padding: 2rem;
}
.css-18e3th9 {
background: linear-gradient(135deg, #ff9a9e, #fad0c4, #fbc2eb, #a18cd1);
}
</style>
"""
st.markdown(main_bg_style, unsafe_allow_html=True)
# Sidebar: Input for URL and API keys
st.sidebar.title("Settings")
# Input field for entering URL dynamically with placeholder and help text
url_input = st.sidebar.text_input("Enter Blog Post URL", placeholder="e.g., https://example.com/blog", help="Paste the full URL of the blog post you want to retrieve data from")
# Validate the URL and show a success message when correct
if url_input:
if re.match(r"https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+", url_input):
st.sidebar.markdown('<p style="color:green; font-weight:bold;">URL is correctly entered</p>', unsafe_allow_html=True)
else:
st.sidebar.markdown('<p style="color:red; font-weight:bold;">Invalid URL, please enter a valid one</p>', unsafe_allow_html=True)
# Option to use pre-provided API keys
use_preprovided_keys = st.sidebar.checkbox("Use pre-provided API keys")
# Input fields for API keys with placeholders and helper text
if not use_preprovided_keys:
api_key_1 = st.sidebar.text_input("Enter LangChain API Key", type="password", placeholder="Enter your LangChain API Key", help="Please enter a valid LangChain API key here")
api_key_2 = st.sidebar.text_input("Enter Groq API Key", type="password", placeholder="Enter your Groq API Key", help="Please enter your Groq API key here")
else:
api_key_1 = "your-preprovided-langchain-api-key" # Replace with your actual pre-provided key
api_key_2 = "your-preprovided-groq-api-key" # Replace with your actual pre-provided key
st.sidebar.markdown('<p style="color:blue; font-weight:bold;">Using pre-provided API keys</p>', unsafe_allow_html=True)
# Submit button for API keys with a success/warning message
if st.sidebar.button("Submit API Keys"):
if use_preprovided_keys or (api_key_1 and api_key_2):
os.environ["LANGCHAIN_API_KEY"] = api_key_1
os.environ["GROQ_API_KEY"] = api_key_2
st.sidebar.markdown('<p style="color:green; font-weight:bold;">API keys are set</p>', unsafe_allow_html=True)
else:
st.sidebar.markdown('<p style="color:red; font-weight:bold;">Please fill in both API keys or select the option to use pre-provided keys</p>', unsafe_allow_html=True)
# Marquee effect with bold, stylish text and a LinkedIn link
st.markdown("""
<marquee behavior="scroll" direction="left" scrollamount="10">
<p style='font-size:24px; color:#FF5733; font-weight:bold;'>
Created by: <a href="https://www.linkedin.com/in/datascientisthameshraj/" target="_blank" style="color:#1E90FF; text-decoration:none;">Engr. Hamesh Raj</a>
</p>
</marquee>
""", unsafe_allow_html=True)
# Title of the chatbot
st.markdown('<h1 style="color:#4CAF50; font-weight:bold;">🤖 Chatbot with URL-based Document Retrieval</h1>', unsafe_allow_html=True)
# Chat query input field with placeholder and help text
query = st.text_input("Ask a question based on the blog post", placeholder="Type your question here...", help="Enter a question related to the content of the blog post")
# Placeholder to display responses
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
# Submit button for chat
if st.button("Submit Query"):
if query:
if url_input:
# Blog loading logic based on user input URL
loader = WebBaseLoader(
web_paths=(url_input,), # Use the user-input URL
bs_kwargs=dict(
parse_only=bs4.SoupStrainer() # Adjust based on the user's URL structure
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
# Define the embedding class
class SentenceTransformerEmbedding:
def __init__(self, model_name):
self.model = SentenceTransformer(model_name)
def embed_documents(self, texts):
embeddings = self.model.encode(texts, convert_to_tensor=True)
if isinstance(embeddings, torch.Tensor):
return embeddings.cpu().detach().numpy().tolist() # Convert tensor to list
return embeddings
def embed_query(self, query):
embedding = self.model.encode([query], convert_to_tensor=True)
if isinstance(embedding, torch.Tensor):
return embedding.cpu().detach().numpy().tolist()[0] # Convert tensor to list
return embedding[0]
# Initialize the embedding model
embedding_model = SentenceTransformerEmbedding('all-MiniLM-L6-v2')
# Initialize Chroma with the embedding class
vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model)
# Retrieve and generate using the relevant snippets of the blog
retriever = vectorstore.as_retriever()
prompt = load_prompt("rlm/rag-prompt")
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| ChatGroq(model="llama3-8b-8192") # Replace `llm` with an appropriate language model
| StrOutputParser()
)
# Generate the answer using the user's query
result = rag_chain.invoke(query)
# Store query and response in session for chat history
st.session_state['chat_history'].append((query, result))
else:
st.warning("Please enter a valid URL.")
else:
st.warning("Please enter a question.")
# Display chat history
for q, r in st.session_state['chat_history']:
st.write(f"**User:** {q}")
st.write(f"**Bot:** {r}") |