File size: 7,223 Bytes
4a118a7
 
 
4e001cd
 
 
 
 
 
 
 
 
 
 
 
4a118a7
 
 
 
 
 
 
 
 
 
 
80d5167
 
 
 
 
 
 
 
 
 
 
 
 
 
4a118a7
 
 
 
 
 
 
 
 
 
 
 
 
80d5167
 
 
4a118a7
80d5167
 
 
 
df535b0
 
80d5167
4a118a7
 
 
80d5167
4a118a7
 
80d5167
4a118a7
80d5167
bb7bc72
0f09491
 
 
 
 
 
 
 
 
4a118a7
 
 
 
 
 
 
 
 
 
80d5167
4a118a7
4e001cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a118a7
 
 
 
80d5167
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
import re
import os
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import WebBaseLoader
from langchain.embeddings import SentenceTransformerEmbedding
from langchain.vectorstores import Chroma
from langchain.prompts import load_prompt
from langchain.chat_models import ChatGroq
from langchain.output_parsers import StrOutputParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.runnables import RunnablePassthrough
import torch
from sentence_transformers import SentenceTransformer
import bs4

# Sidebar Style with Multicolored Background
sidebar_bg_style = """
    <style>
        [data-testid="stSidebar"] {
            background: linear-gradient(135deg, #ffafbd, #ffc3a0, #2193b0, #6dd5ed);
        }
    </style>
"""
st.markdown(sidebar_bg_style, unsafe_allow_html=True)

# Main Content Style with Multicolored Background
main_bg_style = """
    <style>
        .main .block-container {
            background: linear-gradient(135deg, #ff9a9e, #fad0c4, #fbc2eb, #a18cd1);
            padding: 2rem;
        }
        .css-18e3th9 {
            background: linear-gradient(135deg, #ff9a9e, #fad0c4, #fbc2eb, #a18cd1);
        }
    </style>
"""
st.markdown(main_bg_style, unsafe_allow_html=True)

# Sidebar: Input for URL and API keys
st.sidebar.title("Settings")

# Input field for entering URL dynamically with placeholder and help text
url_input = st.sidebar.text_input("Enter Blog Post URL", placeholder="e.g., https://example.com/blog", help="Paste the full URL of the blog post you want to retrieve data from")

# Validate the URL and show a success message when correct
if url_input:
    if re.match(r"https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+", url_input):
        st.sidebar.markdown('<p style="color:green; font-weight:bold;">URL is correctly entered</p>', unsafe_allow_html=True)
    else:
        st.sidebar.markdown('<p style="color:red; font-weight:bold;">Invalid URL, please enter a valid one</p>', unsafe_allow_html=True)

# Option to use pre-provided API keys
use_preprovided_keys = st.sidebar.checkbox("Use pre-provided API keys")

# Input fields for API keys with placeholders and helper text
if not use_preprovided_keys:
    api_key_1 = st.sidebar.text_input("Enter LangChain API Key", type="password", placeholder="Enter your LangChain API Key", help="Please enter a valid LangChain API key here")
    api_key_2 = st.sidebar.text_input("Enter Groq API Key", type="password", placeholder="Enter your Groq API Key", help="Please enter your Groq API key here")
else:
    api_key_1 = "your-preprovided-langchain-api-key"  # Replace with your actual pre-provided key
    api_key_2 = "your-preprovided-groq-api-key"  # Replace with your actual pre-provided key
    st.sidebar.markdown('<p style="color:blue; font-weight:bold;">Using pre-provided API keys</p>', unsafe_allow_html=True)

# Submit button for API keys with a success/warning message
if st.sidebar.button("Submit API Keys"):
    if use_preprovided_keys or (api_key_1 and api_key_2):
        os.environ["LANGCHAIN_API_KEY"] = api_key_1
        os.environ["GROQ_API_KEY"] = api_key_2
        st.sidebar.markdown('<p style="color:green; font-weight:bold;">API keys are set</p>', unsafe_allow_html=True)
    else:
        st.sidebar.markdown('<p style="color:red; font-weight:bold;">Please fill in both API keys or select the option to use pre-provided keys</p>', unsafe_allow_html=True)

# Marquee effect with bold, stylish text and a LinkedIn link
st.markdown("""
    <marquee behavior="scroll" direction="left" scrollamount="10">
        <p style='font-size:24px; color:#FF5733; font-weight:bold;'>
            Created by: <a href="https://www.linkedin.com/in/datascientisthameshraj/" target="_blank" style="color:#1E90FF; text-decoration:none;">Engr. Hamesh Raj</a>
        </p>
    </marquee>
    """, unsafe_allow_html=True)

# Title of the chatbot
st.markdown('<h1 style="color:#4CAF50; font-weight:bold;">🤖 Chatbot with URL-based Document Retrieval</h1>', unsafe_allow_html=True)

# Chat query input field with placeholder and help text
query = st.text_input("Ask a question based on the blog post", placeholder="Type your question here...", help="Enter a question related to the content of the blog post")

# Placeholder to display responses
if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []

# Submit button for chat
if st.button("Submit Query"):
    if query:
        if url_input:
            # Blog loading logic based on user input URL
            loader = WebBaseLoader(
                web_paths=(url_input,),  # Use the user-input URL
                bs_kwargs=dict(
                    parse_only=bs4.SoupStrainer()  # Adjust based on the user's URL structure
                ),
            )
            docs = loader.load()

            text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
            splits = text_splitter.split_documents(docs)

            # Define the embedding class
            class SentenceTransformerEmbedding:
                def __init__(self, model_name):
                    self.model = SentenceTransformer(model_name)

                def embed_documents(self, texts):
                    embeddings = self.model.encode(texts, convert_to_tensor=True)
                    if isinstance(embeddings, torch.Tensor):
                        return embeddings.cpu().detach().numpy().tolist()  # Convert tensor to list
                    return embeddings

                def embed_query(self, query):
                    embedding = self.model.encode([query], convert_to_tensor=True)
                    if isinstance(embedding, torch.Tensor):
                        return embedding.cpu().detach().numpy().tolist()[0]  # Convert tensor to list
                    return embedding[0]

            # Initialize the embedding model
            embedding_model = SentenceTransformerEmbedding('all-MiniLM-L6-v2')

            # Initialize Chroma with the embedding class
            vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model)

            # Retrieve and generate using the relevant snippets of the blog
            retriever = vectorstore.as_retriever()
            prompt = load_prompt("rlm/rag-prompt")

            def format_docs(docs):
                return "\n\n".join(doc.page_content for doc in docs)

            rag_chain = (
                {"context": retriever | format_docs, "question": RunnablePassthrough()}
                | prompt
                | ChatGroq(model="llama3-8b-8192")  # Replace `llm` with an appropriate language model
                | StrOutputParser()
            )

            # Generate the answer using the user's query
            result = rag_chain.invoke(query)

            # Store query and response in session for chat history
            st.session_state['chat_history'].append((query, result))
        else:
            st.warning("Please enter a valid URL.")
    else:
        st.warning("Please enter a question.")

# Display chat history
for q, r in st.session_state['chat_history']:
    st.write(f"**User:** {q}")
    st.write(f"**Bot:** {r}")