datascientist22 commited on
Commit
a9e7e55
·
verified ·
1 Parent(s): b7471e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -25
app.py CHANGED
@@ -136,43 +136,46 @@ if st.button("Submit Query"):
136
  parse_only=bs4.SoupStrainer() # Adjust based on the user's URL structure
137
  ),
138
  )
139
- docs = loader.load()
 
140
 
141
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
142
- splits = text_splitter.split_documents(docs)
143
 
144
- # Initialize the embedding model
145
- embedding_model = SentenceTransformerEmbedding('all-MiniLM-L6-v2')
146
 
147
- # Initialize Chroma with the embedding class
148
- vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model)
149
 
150
- # Retrieve and generate using the relevant snippets of the blog
151
- retriever = vectorstore.as_retriever()
152
 
153
- # Retrieve relevant documents
154
- retrieved_docs = retriever.get_relevant_documents(query)
155
 
156
- # Format the retrieved documents
157
- def format_docs(docs):
158
- return "\n\n".join(doc.page_content for doc in docs)
159
 
160
- context = format_docs(retrieved_docs)
161
 
162
- # Initialize the language model
163
- custom_llm = CustomLanguageModel()
164
 
165
- # Initialize RAG chain using the prompt
166
- prompt = RAGPrompt()
167
 
168
- # Apply the prompt directly to the data (no chaining using `|`)
169
- prompt_data = prompt({"question": query, "context": context})
170
 
171
- # Generate the response using the language model, focusing on the answer from the retrieved context
172
- result = custom_llm.generate(prompt_data["question"], prompt_data["context"])
173
 
174
- # Store query and response in session for chat history
175
- st.session_state['chat_history'].append((query, result))
 
 
176
 
177
  # Display chat history
178
  for q, r in st.session_state['chat_history']:
 
136
  parse_only=bs4.SoupStrainer() # Adjust based on the user's URL structure
137
  ),
138
  )
139
+ try:
140
+ docs = loader.load()
141
 
142
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
143
+ splits = text_splitter.split_documents(docs)
144
 
145
+ # Initialize the embedding model
146
+ embedding_model = SentenceTransformerEmbedding('all-MiniLM-L6-v2')
147
 
148
+ # Initialize Chroma with the embedding class
149
+ vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model)
150
 
151
+ # Retrieve and generate using the relevant snippets of the blog
152
+ retriever = vectorstore.as_retriever()
153
 
154
+ # Retrieve relevant documents
155
+ retrieved_docs = retriever.get_relevant_documents(query)
156
 
157
+ # Format the retrieved documents
158
+ def format_docs(docs):
159
+ return "\n\n".join(doc.page_content for doc in docs)
160
 
161
+ context = format_docs(retrieved_docs)
162
 
163
+ # Initialize the language model
164
+ custom_llm = CustomLanguageModel()
165
 
166
+ # Initialize RAG chain using the prompt
167
+ prompt = RAGPrompt()
168
 
169
+ # Apply the prompt directly to the data (no chaining using `|`)
170
+ prompt_data = prompt({"question": query, "context": context})
171
 
172
+ # Generate the response using the language model, focusing on the answer from the retrieved context
173
+ result = custom_llm.generate(prompt_data["question"], prompt_data["context"])
174
 
175
+ # Store query and response in session for chat history
176
+ st.session_state['chat_history'].append((query, result))
177
+ except Exception as e:
178
+ st.error(f"Error loading the blog or processing the query: {e}")
179
 
180
  # Display chat history
181
  for q, r in st.session_state['chat_history']: