datascientist22 commited on
Commit
fc71a0f
·
verified ·
1 Parent(s): 4e001cd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -19
app.py CHANGED
@@ -3,7 +3,6 @@ import re
3
  import os
4
  from langchain.chains import ConversationalRetrievalChain
5
  from langchain.document_loaders import WebBaseLoader
6
- from langchain.embeddings import SentenceTransformerEmbedding
7
  from langchain.vectorstores import Chroma
8
  from langchain.prompts import load_prompt
9
  from langchain.chat_models import ChatGroq
@@ -107,25 +106,8 @@ if st.button("Submit Query"):
107
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
108
  splits = text_splitter.split_documents(docs)
109
 
110
- # Define the embedding class
111
- class SentenceTransformerEmbedding:
112
- def __init__(self, model_name):
113
- self.model = SentenceTransformer(model_name)
114
-
115
- def embed_documents(self, texts):
116
- embeddings = self.model.encode(texts, convert_to_tensor=True)
117
- if isinstance(embeddings, torch.Tensor):
118
- return embeddings.cpu().detach().numpy().tolist() # Convert tensor to list
119
- return embeddings
120
-
121
- def embed_query(self, query):
122
- embedding = self.model.encode([query], convert_to_tensor=True)
123
- if isinstance(embedding, torch.Tensor):
124
- return embedding.cpu().detach().numpy().tolist()[0] # Convert tensor to list
125
- return embedding[0]
126
-
127
  # Initialize the embedding model
128
- embedding_model = SentenceTransformerEmbedding('all-MiniLM-L6-v2')
129
 
130
  # Initialize Chroma with the embedding class
131
  vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model)
 
3
  import os
4
  from langchain.chains import ConversationalRetrievalChain
5
  from langchain.document_loaders import WebBaseLoader
 
6
  from langchain.vectorstores import Chroma
7
  from langchain.prompts import load_prompt
8
  from langchain.chat_models import ChatGroq
 
106
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
107
  splits = text_splitter.split_documents(docs)
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  # Initialize the embedding model
110
+ embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
111
 
112
  # Initialize Chroma with the embedding class
113
  vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model)