Spaces:
Sleeping
Sleeping
# import requests | |
# import logging | |
# import duckdb | |
# import numpy as np | |
# from torch import cuda | |
# from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
# from bertopic import BERTopic | |
# from bertopic.representation import KeyBERTInspired | |
# from umap import UMAP | |
# from hdbscan import HDBSCAN | |
# from sklearn.feature_extraction.text import CountVectorizer | |
# from sentence_transformers import SentenceTransformer | |
# from dotenv import load_dotenv | |
# import os | |
# import spaces | |
# import gradio as gr | |
# """ | |
# TODOs: | |
# - Try for small dataset <1000 rows | |
# """ | |
# load_dotenv() | |
# HF_TOKEN = os.getenv("HF_TOKEN") | |
# assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables" | |
# logging.basicConfig( | |
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" | |
# ) | |
# MAX_ROWS = 5_000 | |
# CHUNK_SIZE = 1_000 | |
# session = requests.Session() | |
# sentence_model = SentenceTransformer("all-MiniLM-L6-v2") | |
# keybert = KeyBERTInspired() | |
# vectorizer_model = CountVectorizer(stop_words="english") | |
# representation_model = KeyBERTInspired() | |
# global_topic_model = None | |
# def get_split_rows(dataset, config, split): | |
# config_size = session.get( | |
# f"https://datasets-server.huggingface.co/size?dataset={dataset}&config={config}", | |
# timeout=20, | |
# ).json() | |
# if "error" in config_size: | |
# raise Exception(f"Error fetching config size: {config_size['error']}") | |
# split_size = next( | |
# (s for s in config_size["size"]["splits"] if s["split"] == split), | |
# None, | |
# ) | |
# if split_size is None: | |
# raise Exception(f"Error fetching split {split} in config {config}") | |
# return split_size["num_rows"] | |
# def get_parquet_urls(dataset, config, split): | |
# parquet_files = session.get( | |
# f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}", | |
# timeout=20, | |
# ).json() | |
# if "error" in parquet_files: | |
# raise Exception(f"Error fetching parquet files: {parquet_files['error']}") | |
# parquet_urls = [file["url"] for file in parquet_files["parquet_files"]] | |
# logging.debug(f"Parquet files: {parquet_urls}") | |
# return ",".join(f"'{url}'" for url in parquet_urls) | |
# def get_docs_from_parquet(parquet_urls, column, offset, limit): | |
# SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};" | |
# df = duckdb.sql(SQL_QUERY).to_df() | |
# logging.debug(f"Dataframe: {df.head(5)}") | |
# return df[column].tolist() | |
# @spaces.GPU | |
# def calculate_embeddings(docs): | |
# return sentence_model.encode(docs, show_progress_bar=True, batch_size=32) | |
# def calculate_n_neighbors_and_components(n_rows): | |
# n_neighbors = min(max(n_rows // 20, 15), 100) | |
# n_components = 10 if n_rows > 1000 else 5 # Higher components for larger datasets | |
# return n_neighbors, n_components | |
# @spaces.GPU | |
# def fit_model(docs, embeddings, n_neighbors, n_components): | |
# global global_topic_model | |
# umap_model = UMAP( | |
# n_neighbors=n_neighbors, | |
# n_components=n_components, | |
# min_dist=0.0, | |
# metric="cosine", | |
# random_state=42, | |
# ) | |
# hdbscan_model = HDBSCAN( | |
# min_cluster_size=max( | |
# 5, n_neighbors // 2 | |
# ), # Reducing min_cluster_size for fewer outliers | |
# metric="euclidean", | |
# cluster_selection_method="eom", | |
# prediction_data=True, | |
# ) | |
# new_model = BERTopic( | |
# language="english", | |
# # Sub-models | |
# embedding_model=sentence_model, | |
# umap_model=umap_model, | |
# hdbscan_model=hdbscan_model, | |
# representation_model=representation_model, | |
# vectorizer_model=vectorizer_model, | |
# # Hyperparameters | |
# top_n_words=10, | |
# verbose=True, | |
# min_topic_size=n_neighbors, # Coherent with n_neighbors? | |
# ) | |
# logging.info("Fitting new model") | |
# new_model.fit(docs, embeddings) | |
# logging.info("End fitting new model") | |
# global_topic_model = new_model | |
# logging.info("Global model updated") | |
# def generate_topics(dataset, config, split, column, nested_column): | |
# logging.info( | |
# f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}" | |
# ) | |
# parquet_urls = get_parquet_urls(dataset, config, split) | |
# split_rows = get_split_rows(dataset, config, split) | |
# logging.info(f"Split rows: {split_rows}") | |
# limit = min(split_rows, MAX_ROWS) | |
# n_neighbors, n_components = calculate_n_neighbors_and_components(limit) | |
# reduce_umap_model = UMAP( | |
# n_neighbors=n_neighbors, | |
# n_components=2, # For visualization, keeping it at 2 (2D) | |
# min_dist=0.0, | |
# metric="cosine", | |
# random_state=42, | |
# ) | |
# offset = 0 | |
# rows_processed = 0 | |
# base_model = None | |
# all_docs = [] | |
# reduced_embeddings_list = [] | |
# topics_info, topic_plot = None, None | |
# yield ( | |
# gr.DataFrame(value=[], interactive=False, visible=True), | |
# gr.Plot(value=None, visible=True), | |
# gr.Label( | |
# {f"⚙️ Generating topics {dataset}": rows_processed / limit}, visible=True | |
# ), | |
# ) | |
# while offset < limit: | |
# docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE) | |
# if not docs: | |
# break | |
# logging.info( | |
# f"----> Processing chunk: {offset=} {CHUNK_SIZE=} with {len(docs)} docs" | |
# ) | |
# embeddings = calculate_embeddings(docs) | |
# fit_model(docs, embeddings, n_neighbors, n_components) | |
# if base_model is None: | |
# base_model = global_topic_model | |
# else: | |
# updated_model = BERTopic.merge_models([base_model, global_topic_model]) | |
# nr_new_topics = len(set(updated_model.topics_)) - len( | |
# set(base_model.topics_) | |
# ) | |
# new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:] | |
# logging.info(f"The following topics are newly found: {new_topics}") | |
# base_model = updated_model | |
# reduced_embeddings = reduce_umap_model.fit_transform(embeddings) | |
# reduced_embeddings_list.append(reduced_embeddings) | |
# all_docs.extend(docs) | |
# topics_info = base_model.get_topic_info() | |
# topic_plot = base_model.visualize_documents( | |
# all_docs, | |
# reduced_embeddings=np.vstack(reduced_embeddings_list), | |
# custom_labels=True, | |
# ) | |
# rows_processed += len(docs) | |
# progress = min(rows_processed / limit, 1.0) | |
# logging.info(f"Progress: {progress} % - {rows_processed} of {limit}") | |
# yield ( | |
# topics_info, | |
# topic_plot, | |
# gr.Label({f"⚙️ Generating topics {dataset}": progress}, visible=True), | |
# ) | |
# offset += CHUNK_SIZE | |
# logging.info("Finished processing all data") | |
# yield ( | |
# topics_info, | |
# topic_plot, | |
# gr.Label({f"✅ Generating topics {dataset}": 1.0}, visible=True), | |
# ) | |
# cuda.empty_cache() | |
# with gr.Blocks() as demo: | |
# gr.Markdown("# 💠 Dataset Topic Discovery 🔭") | |
# gr.Markdown("## Select dataset and text column") | |
# with gr.Accordion("Data details", open=True): | |
# with gr.Row(): | |
# with gr.Column(scale=3): | |
# dataset_name = HuggingfaceHubSearch( | |
# label="Hub Dataset ID", | |
# placeholder="Search for dataset id on Huggingface", | |
# search_type="dataset", | |
# ) | |
# subset_dropdown = gr.Dropdown(label="Subset", visible=False) | |
# split_dropdown = gr.Dropdown(label="Split", visible=False) | |
# with gr.Accordion("Dataset preview", open=False): | |
# @gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown]) | |
# def embed(name, subset, split): | |
# html_code = f""" | |
# <iframe | |
# src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}" | |
# frameborder="0" | |
# width="100%" | |
# height="600px" | |
# ></iframe> | |
# """ | |
# return gr.HTML(value=html_code) | |
# with gr.Row(): | |
# text_column_dropdown = gr.Dropdown(label="Text column name") | |
# nested_text_column_dropdown = gr.Dropdown( | |
# label="Nested text column name", visible=False | |
# ) | |
# generate_button = gr.Button("Generate Topics", variant="primary") | |
# gr.Markdown("## Datamap") | |
# full_topics_generation_label = gr.Label(visible=False, show_label=False) | |
# topics_plot = gr.Plot() | |
# with gr.Accordion("Topics Info", open=False): | |
# topics_df = gr.DataFrame(interactive=False, visible=True) | |
# generate_button.click( | |
# generate_topics, | |
# inputs=[ | |
# dataset_name, | |
# subset_dropdown, | |
# split_dropdown, | |
# text_column_dropdown, | |
# nested_text_column_dropdown, | |
# ], | |
# outputs=[topics_df, topics_plot, full_topics_generation_label], | |
# ) | |
# def _resolve_dataset_selection( | |
# dataset: str, default_subset: str, default_split: str, text_feature | |
# ): | |
# if "/" not in dataset.strip().strip("/"): | |
# return { | |
# subset_dropdown: gr.Dropdown(visible=False), | |
# split_dropdown: gr.Dropdown(visible=False), | |
# text_column_dropdown: gr.Dropdown(label="Text column name"), | |
# nested_text_column_dropdown: gr.Dropdown(visible=False), | |
# } | |
# info_resp = session.get( | |
# f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20 | |
# ).json() | |
# if "error" in info_resp: | |
# return { | |
# subset_dropdown: gr.Dropdown(visible=False), | |
# split_dropdown: gr.Dropdown(visible=False), | |
# text_column_dropdown: gr.Dropdown(label="Text column name"), | |
# nested_text_column_dropdown: gr.Dropdown(visible=False), | |
# } | |
# subsets: list[str] = list(info_resp["dataset_info"]) | |
# subset = default_subset if default_subset in subsets else subsets[0] | |
# splits: list[str] = list(info_resp["dataset_info"][subset]["splits"]) | |
# split = default_split if default_split in splits else splits[0] | |
# features = info_resp["dataset_info"][subset]["features"] | |
# def _is_string_feature(feature): | |
# return isinstance(feature, dict) and feature.get("dtype") == "string" | |
# text_features = [ | |
# feature_name | |
# for feature_name, feature in features.items() | |
# if _is_string_feature(feature) | |
# ] | |
# nested_features = [ | |
# feature_name | |
# for feature_name, feature in features.items() | |
# if isinstance(feature, dict) | |
# and isinstance(next(iter(feature.values())), dict) | |
# ] | |
# nested_text_features = [ | |
# feature_name | |
# for feature_name in nested_features | |
# if any( | |
# _is_string_feature(nested_feature) | |
# for nested_feature in features[feature_name].values() | |
# ) | |
# ] | |
# if not text_feature: | |
# return { | |
# subset_dropdown: gr.Dropdown( | |
# value=subset, choices=subsets, visible=len(subsets) > 1 | |
# ), | |
# split_dropdown: gr.Dropdown( | |
# value=split, choices=splits, visible=len(splits) > 1 | |
# ), | |
# text_column_dropdown: gr.Dropdown( | |
# choices=text_features + nested_text_features, | |
# label="Text column name", | |
# ), | |
# nested_text_column_dropdown: gr.Dropdown(visible=False), | |
# } | |
# if text_feature in nested_text_features: | |
# nested_keys = [ | |
# feature_name | |
# for feature_name, feature in features[text_feature].items() | |
# if _is_string_feature(feature) | |
# ] | |
# return { | |
# subset_dropdown: gr.Dropdown( | |
# value=subset, choices=subsets, visible=len(subsets) > 1 | |
# ), | |
# split_dropdown: gr.Dropdown( | |
# value=split, choices=splits, visible=len(splits) > 1 | |
# ), | |
# text_column_dropdown: gr.Dropdown( | |
# choices=text_features + nested_text_features, | |
# label="Text column name", | |
# ), | |
# nested_text_column_dropdown: gr.Dropdown( | |
# value=nested_keys[0], | |
# choices=nested_keys, | |
# label="Nested text column name", | |
# visible=True, | |
# ), | |
# } | |
# return { | |
# subset_dropdown: gr.Dropdown( | |
# value=subset, choices=subsets, visible=len(subsets) > 1 | |
# ), | |
# split_dropdown: gr.Dropdown( | |
# value=split, choices=splits, visible=len(splits) > 1 | |
# ), | |
# text_column_dropdown: gr.Dropdown( | |
# choices=text_features + nested_text_features, label="Text column name" | |
# ), | |
# nested_text_column_dropdown: gr.Dropdown(visible=False), | |
# } | |
# @dataset_name.change( | |
# inputs=[dataset_name], | |
# outputs=[ | |
# subset_dropdown, | |
# split_dropdown, | |
# text_column_dropdown, | |
# nested_text_column_dropdown, | |
# ], | |
# ) | |
# def show_input_from_subset_dropdown(dataset: str) -> dict: | |
# return _resolve_dataset_selection( | |
# dataset, default_subset="default", default_split="train", text_feature=None | |
# ) | |
# @subset_dropdown.change( | |
# inputs=[dataset_name, subset_dropdown], | |
# outputs=[ | |
# subset_dropdown, | |
# split_dropdown, | |
# text_column_dropdown, | |
# nested_text_column_dropdown, | |
# ], | |
# ) | |
# def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict: | |
# return _resolve_dataset_selection( | |
# dataset, default_subset=subset, default_split="train", text_feature=None | |
# ) | |
# @split_dropdown.change( | |
# inputs=[dataset_name, subset_dropdown, split_dropdown], | |
# outputs=[ | |
# subset_dropdown, | |
# split_dropdown, | |
# text_column_dropdown, | |
# nested_text_column_dropdown, | |
# ], | |
# ) | |
# def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict: | |
# return _resolve_dataset_selection( | |
# dataset, default_subset=subset, default_split=split, text_feature=None | |
# ) | |
# @text_column_dropdown.change( | |
# inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown], | |
# outputs=[ | |
# subset_dropdown, | |
# split_dropdown, | |
# text_column_dropdown, | |
# nested_text_column_dropdown, | |
# ], | |
# ) | |
# def show_input_from_text_column_dropdown( | |
# dataset: str, subset: str, split: str, text_column | |
# ) -> dict: | |
# return _resolve_dataset_selection( | |
# dataset, | |
# default_subset=subset, | |
# default_split=split, | |
# text_feature=text_column, | |
# ) | |
# demo.launch() | |
import gradio as gr | |
# Full HTML content | |
html_content = """ | |
<h1 style="color: blue;">Welcome to My Gradio App</h1> | |
<p>This is a paragraph with <b>bold</b> and <i>italic</i> text.</p> | |
<ul> | |
<li>First item</li> | |
<li>Second item</li> | |
<li>Third item</li> | |
</ul> | |
<img src="https://via.placeholder.com/150" alt="Sample Image"> | |
""" | |
# Create a Gradio interface | |
with gr.Blocks() as demo: | |
gr.HTML(html_content) | |
# Launch the app | |
demo.launch() | |