Spaces:
Runtime error
Runtime error
from dotenv import load_dotenv | |
import streamlit as st | |
from user_utils import * | |
#Creating session variables | |
if 'HR_tickets' not in st.session_state: | |
st.session_state['HR_tickets'] =[] | |
if 'IT_tickets' not in st.session_state: | |
st.session_state['IT_tickets'] =[] | |
if 'Transport_tickets' not in st.session_state: | |
st.session_state['Transport_tickets'] =[] | |
load_dotenv() | |
def main(): | |
st.header("Automatic Ticket Classification Tool") | |
#Capture user input | |
st.write("We are here to help you, please ask your question:") | |
user_input = st.text_input("π") | |
if user_input: | |
#creating embeddings instance | |
embeddings=create_embeddings() | |
#Function to pull index data from Pinecone | |
index=pull_from_pinecone(embeddings) | |
#This function will help us in fetching the top relevent documents from our vector store - Pinecone Index | |
relavant_docs=get_similar_docs(index,user_input) | |
#This will return the fine tuned response by LLM | |
response=get_answer(relavant_docs,user_input) | |
st.write(response) | |
#Button to create a ticket with respective department | |
button = st.button("Submit ticket?") | |
if button: | |
#Get Response | |
embeddings = create_embeddings() | |
query_result = embeddings.embed_query(user_input) | |
#loading the ML model, so that we can use it to predit the class to which this compliant belongs to... | |
department_value = predict(query_result) | |
st.write("your ticket has been sumbitted to : "+department_value) | |
#Appending the tickets to below list, so that we can view/use them later on... | |
if department_value=="HR": | |
st.session_state['HR_tickets'].append(user_input) | |
elif department_value=="IT": | |
st.session_state['IT_tickets'].append(user_input) | |
else: | |
st.session_state['Transport_tickets'].append(user_input) | |
if __name__ == '__main__': | |
main() | |