Spaces:
Running
Running
Commit
•
907b541
1
Parent(s):
eb008d8
add state to app
Browse files
app.py
CHANGED
@@ -35,7 +35,7 @@ def load_corpus(
|
|
35 |
|
36 |
def split_corpus(verbose, docs, chunk_size, chunk_overlap):
|
37 |
if verbose:
|
38 |
-
|
39 |
|
40 |
parser = SentenceSplitter.from_defaults(
|
41 |
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
@@ -43,7 +43,7 @@ def split_corpus(verbose, docs, chunk_size, chunk_overlap):
|
|
43 |
nodes = parser.get_nodes_from_documents(docs, show_progress=verbose)
|
44 |
|
45 |
if verbose:
|
46 |
-
|
47 |
|
48 |
docs = {
|
49 |
node.node_id: node.get_content(metadata_mode=MetadataMode.NONE)
|
@@ -54,17 +54,15 @@ def split_corpus(verbose, docs, chunk_size, chunk_overlap):
|
|
54 |
return docs
|
55 |
|
56 |
|
57 |
-
def
|
58 |
files,
|
59 |
chunk_size: int = 256,
|
60 |
chunk_overlap: int = 0,
|
61 |
-
hub_id: str = None,
|
62 |
-
private: bool = False,
|
63 |
split_sentences: bool = True,
|
64 |
-
oauth_token: gr.OAuthToken = None,
|
65 |
):
|
66 |
print("loading files")
|
67 |
file_paths = [file.name for file in files]
|
|
|
68 |
print("parsing into sentences")
|
69 |
corpus = load_corpus(
|
70 |
file_paths,
|
@@ -72,12 +70,64 @@ def upload_file(
|
|
72 |
chunk_overlap=chunk_overlap,
|
73 |
split_sentences=split_sentences,
|
74 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
print("Creating dataset")
|
76 |
dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()})
|
77 |
-
message = f"Dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
if hub_id:
|
79 |
if oauth_token is not None:
|
80 |
-
gr.Info("Uploading to Hugging Face Hub")
|
81 |
dataset.push_to_hub(hub_id, token=oauth_token.token, private=private)
|
82 |
update_dataset_card(hub_id, oauth_token.token, chunk_size, chunk_overlap)
|
83 |
message += (
|
@@ -86,7 +136,7 @@ def upload_file(
|
|
86 |
else:
|
87 |
raise gr.Error("Please login to Hugging Face Hub to push to hub")
|
88 |
|
89 |
-
return
|
90 |
|
91 |
|
92 |
def update_dataset_card(
|
@@ -116,25 +166,30 @@ The resulting text chunks are stored in a dataset that can be previewed and uplo
|
|
116 |
The chunking is done using `Llama-index`'s [`SentenceSplitter`](https://docs.llamaindex.ai/en/stable/module_guides/loading/node_parsers/modules/?h=sentencesplitter#sentencesplitter) classes.
|
117 |
|
118 |
### Usage:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
|
125 |
with gr.Blocks() as demo:
|
|
|
|
|
126 |
gr.HTML(
|
127 |
"""<h1 style='text-align: center;'> Corpus Creator</h1>
|
128 |
-
<center><i> 📁 From random files to a Hugging Face dataset in a
|
129 |
)
|
130 |
gr.Markdown(description)
|
|
|
131 |
with gr.Row():
|
132 |
-
gr.
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
138 |
with gr.Row():
|
139 |
split_sentences = gr.Checkbox(True, label="Split sentences?")
|
140 |
chunk_size = gr.Number(
|
@@ -151,25 +206,42 @@ with gr.Blocks() as demo:
|
|
151 |
maximum=4096,
|
152 |
step=1,
|
153 |
)
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
)
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
with gr.Accordion("detailed logs", open=False):
|
161 |
Log(log_file, dark=True, xterm_font_size=12)
|
162 |
-
|
163 |
upload_button.upload(
|
164 |
-
|
165 |
-
inputs=[
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
],
|
173 |
-
outputs=[corpus_preview_df, summary],
|
174 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
demo.launch(debug=True)
|
|
|
35 |
|
36 |
def split_corpus(verbose, docs, chunk_size, chunk_overlap):
|
37 |
if verbose:
|
38 |
+
gr.Info(f"Loaded {len(docs)} docs")
|
39 |
|
40 |
parser = SentenceSplitter.from_defaults(
|
41 |
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
|
|
43 |
nodes = parser.get_nodes_from_documents(docs, show_progress=verbose)
|
44 |
|
45 |
if verbose:
|
46 |
+
gr.Info(f"Parsed {len(nodes)} nodes")
|
47 |
|
48 |
docs = {
|
49 |
node.node_id: node.get_content(metadata_mode=MetadataMode.NONE)
|
|
|
54 |
return docs
|
55 |
|
56 |
|
57 |
+
def upload_and_preview(
|
58 |
files,
|
59 |
chunk_size: int = 256,
|
60 |
chunk_overlap: int = 0,
|
|
|
|
|
61 |
split_sentences: bool = True,
|
|
|
62 |
):
|
63 |
print("loading files")
|
64 |
file_paths = [file.name for file in files]
|
65 |
+
|
66 |
print("parsing into sentences")
|
67 |
corpus = load_corpus(
|
68 |
file_paths,
|
|
|
70 |
chunk_overlap=chunk_overlap,
|
71 |
split_sentences=split_sentences,
|
72 |
)
|
73 |
+
gr.Info("Creating dataset")
|
74 |
+
dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()})
|
75 |
+
message = f"Files uploaded and dataset preview created:\n - {len(dataset)} rows"
|
76 |
+
|
77 |
+
state = {
|
78 |
+
"file_paths": file_paths,
|
79 |
+
"dataset": dataset,
|
80 |
+
"chunk_size": chunk_size,
|
81 |
+
"chunk_overlap": chunk_overlap,
|
82 |
+
}
|
83 |
+
|
84 |
+
return state, dataset.to_pandas(), message
|
85 |
+
|
86 |
+
|
87 |
+
def preview_dataset(
|
88 |
+
state,
|
89 |
+
chunk_size: int = 256,
|
90 |
+
chunk_overlap: int = 0,
|
91 |
+
split_sentences: bool = True,
|
92 |
+
):
|
93 |
+
if not state.get("file_paths"):
|
94 |
+
raise gr.Error("Please upload files first.")
|
95 |
+
|
96 |
+
print("parsing into sentences")
|
97 |
+
corpus = load_corpus(
|
98 |
+
state["file_paths"],
|
99 |
+
chunk_size=chunk_size,
|
100 |
+
chunk_overlap=chunk_overlap,
|
101 |
+
split_sentences=split_sentences,
|
102 |
+
)
|
103 |
print("Creating dataset")
|
104 |
dataset = Dataset.from_dict({"ids": corpus.keys(), "texts": corpus.values()})
|
105 |
+
message = f"Dataset preview updated:\n - {len(dataset)} rows"
|
106 |
+
|
107 |
+
state["dataset"] = dataset
|
108 |
+
state["chunk_size"] = chunk_size
|
109 |
+
state["chunk_overlap"] = chunk_overlap
|
110 |
+
|
111 |
+
return state, dataset.to_pandas(), message
|
112 |
+
|
113 |
+
|
114 |
+
def upload_to_hub(
|
115 |
+
state,
|
116 |
+
hub_id: str = None,
|
117 |
+
private: bool = False,
|
118 |
+
oauth_token: gr.OAuthToken = None,
|
119 |
+
):
|
120 |
+
if not state.get("dataset"):
|
121 |
+
raise gr.Error("Please preview the dataset first.")
|
122 |
+
|
123 |
+
dataset = state["dataset"]
|
124 |
+
chunk_size = state["chunk_size"]
|
125 |
+
chunk_overlap = state["chunk_overlap"]
|
126 |
+
|
127 |
+
message = f"Dataset has: \n - {len(dataset)} rows"
|
128 |
if hub_id:
|
129 |
if oauth_token is not None:
|
130 |
+
gr.Info("Uploading dataset to the Hugging Face Hub...")
|
131 |
dataset.push_to_hub(hub_id, token=oauth_token.token, private=private)
|
132 |
update_dataset_card(hub_id, oauth_token.token, chunk_size, chunk_overlap)
|
133 |
message += (
|
|
|
136 |
else:
|
137 |
raise gr.Error("Please login to Hugging Face Hub to push to hub")
|
138 |
|
139 |
+
return message
|
140 |
|
141 |
|
142 |
def update_dataset_card(
|
|
|
166 |
The chunking is done using `Llama-index`'s [`SentenceSplitter`](https://docs.llamaindex.ai/en/stable/module_guides/loading/node_parsers/modules/?h=sentencesplitter#sentencesplitter) classes.
|
167 |
|
168 |
### Usage:
|
169 |
+
1. Upload Files: Use the upload button to load file(s) for processing. A preview will be automatically generated using default settings.
|
170 |
+
2. Adjust Parameters (Optional): Customize the chunk size, overlap, and sentence splitting option according to your requirements.
|
171 |
+
3. Update Preview (Optional): Click the 'Update Preview' button to view the updated dataset based on your parameter changes.
|
172 |
+
4. Login: When ready to upload, log in to your Hugging Face account using the provided login button.
|
173 |
+
5. Upload to Hub: Specify the Hub ID, choose whether to make the dataset private, and click 'Upload to Hub'."""
|
174 |
|
175 |
with gr.Blocks() as demo:
|
176 |
+
state = gr.State({})
|
177 |
+
|
178 |
gr.HTML(
|
179 |
"""<h1 style='text-align: center;'> Corpus Creator</h1>
|
180 |
+
<center><i> 📁 From random files to a Hugging Face dataset in a few steps 📁 </i></center>"""
|
181 |
)
|
182 |
gr.Markdown(description)
|
183 |
+
|
184 |
with gr.Row():
|
185 |
+
upload_button = gr.File(
|
186 |
+
file_types=["text"],
|
187 |
+
file_count="multiple",
|
188 |
+
height=50,
|
189 |
+
interactive=True,
|
190 |
+
label="Upload Files",
|
191 |
+
)
|
192 |
+
|
193 |
with gr.Row():
|
194 |
split_sentences = gr.Checkbox(True, label="Split sentences?")
|
195 |
chunk_size = gr.Number(
|
|
|
206 |
maximum=4096,
|
207 |
step=1,
|
208 |
)
|
209 |
+
|
210 |
+
update_preview_button = gr.Button("Update Preview")
|
211 |
+
corpus_preview_df = gr.DataFrame(label="Dataset Preview")
|
212 |
+
preview_summary = gr.Markdown()
|
213 |
+
|
214 |
+
with gr.Row():
|
215 |
+
gr.LoginButton()
|
216 |
+
with gr.Column():
|
217 |
+
gr.Markdown(
|
218 |
+
"To upload to the Hub, add an ID for where you want to push the dataset"
|
219 |
+
)
|
220 |
+
hub_id = gr.Textbox(value=None, label="Hub ID")
|
221 |
+
private = gr.Checkbox(False, label="Upload dataset to a private repo?")
|
222 |
+
|
223 |
+
upload_hub_button = gr.Button("Upload to Hub")
|
224 |
+
upload_summary = gr.Markdown()
|
225 |
|
226 |
with gr.Accordion("detailed logs", open=False):
|
227 |
Log(log_file, dark=True, xterm_font_size=12)
|
228 |
+
|
229 |
upload_button.upload(
|
230 |
+
upload_and_preview,
|
231 |
+
inputs=[upload_button, chunk_size, chunk_overlap, split_sentences],
|
232 |
+
outputs=[state, corpus_preview_df, preview_summary],
|
233 |
+
)
|
234 |
+
|
235 |
+
update_preview_button.click(
|
236 |
+
preview_dataset,
|
237 |
+
inputs=[state, chunk_size, chunk_overlap, split_sentences],
|
238 |
+
outputs=[state, corpus_preview_df, preview_summary],
|
|
|
239 |
)
|
240 |
+
|
241 |
+
upload_hub_button.click(
|
242 |
+
upload_to_hub,
|
243 |
+
inputs=[state, hub_id, private],
|
244 |
+
outputs=[upload_summary],
|
245 |
+
)
|
246 |
+
|
247 |
demo.launch(debug=True)
|