Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 23,367 Bytes
97ab261 665f955 79f2ae1 97ab261 42e0474 97ab261 7cf16e2 97ab261 7cf16e2 97ab261 2057a2c 79f2ae1 2057a2c 7cf16e2 b5c8d5a 5bf5966 44beb50 d574b22 7cf16e2 a302e07 7cf16e2 2057a2c 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 44beb50 4d185df 7cf16e2 2057a2c 79f2ae1 2057a2c 7cf16e2 de90bae 7cf16e2 79f2ae1 2057a2c 79f2ae1 3443f84 79f2ae1 2057a2c 79f2ae1 7cf16e2 a302e07 7cf16e2 a302e07 7cf16e2 79f2ae1 4d185df 7cf16e2 b5c8d5a a302e07 7cf16e2 aa20113 ed553e8 a302e07 ed553e8 a302e07 ed553e8 7cf16e2 ed553e8 7cf16e2 ed553e8 7cf16e2 ed553e8 b5c8d5a 42e0474 b5c8d5a 42e0474 b5c8d5a 42e0474 b5c8d5a 42e0474 b5c8d5a 79f2ae1 4d185df 79f2ae1 4d185df 9ed5b2c 79f2ae1 9ed5b2c b5c8d5a 42e0474 b5c8d5a 79f2ae1 9ed5b2c 79f2ae1 3408aae 79f2ae1 b5c8d5a 7cf16e2 97ab261 7cf16e2 2057a2c 7cf16e2 97ab261 7cf16e2 2057a2c 79f2ae1 9ed5b2c 2057a2c 79f2ae1 b5c8d5a 79f2ae1 7cf16e2 97ab261 7cf16e2 79f2ae1 3408aae 7cf16e2 de90bae 79f2ae1 de90bae 7cf16e2 97ab261 7cf16e2 de90bae 97ab261 b5c8d5a 7cf16e2 3408aae 79f2ae1 3408aae 79f2ae1 3408aae b5c8d5a 97ab261 b5c8d5a 97ab261 b5c8d5a ada4842 b5c8d5a 97ab261 b5c8d5a 97ab261 b5c8d5a 97ab261 b5c8d5a 42e0474 b5c8d5a 97ab261 b5c8d5a d849643 42e0474 d849643 42e0474 d849643 42e0474 d849643 42e0474 d849643 42e0474 d849643 2057a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 |
import asyncio
import logging
import os
import sys
from contextlib import asynccontextmanager
from datetime import datetime
from typing import List, Optional
import chromadb
import dateutil.parser
import httpx
import polars as pl
import torch
from cashews import cache
from chromadb.utils import embedding_functions
from fastapi import FastAPI, HTTPException, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import AutoTokenizer
# Configuration constants
MODEL_NAME = "davanstrien/SmolLM2-360M-tldr-sft-2025-02-12_15-13"
EMBEDDING_MODEL = "nomic-ai/modernbert-embed-base"
BATCH_SIZE = 2000
CACHE_TTL = "24h"
TRENDING_CACHE_TTL = "1h" # 15 minutes cache for trending data
if torch.cuda.is_available():
DEVICE = "cuda"
elif torch.backends.mps.is_available():
DEVICE = "mps"
else:
DEVICE = "cpu"
tokenizer = AutoTokenizer.from_pretrained(
"davanstrien/SmolLM2-360M-tldr-sft-2025-02-12_15-13"
)
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # turn on HF_TRANSFER
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
LOCAL = False
if sys.platform == "darwin":
LOCAL = True
DATA_DIR = "data" if LOCAL else "/data"
# Configure cache
cache.setup("mem://", size_limit="8gb")
# Initialize ChromaDB client
client = chromadb.PersistentClient(path=f"{DATA_DIR}/chroma")
# Initialize FastAPI app
@asynccontextmanager
async def lifespan(app: FastAPI):
# Setup
setup_database()
yield
# Cleanup
await cache.close()
app = FastAPI(lifespan=lifespan)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=[
"https://*.hf.space", # Allow all Hugging Face Spaces
"https://*.huggingface.co", # Allow all Hugging Face domains
# "http://localhost:5500", # Allow localhost:5500 # TODO remove before prod
],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Define the embedding function at module level
def get_embedding_function():
logger.info(f"Using device: {DEVICE}")
return embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="nomic-ai/modernbert-embed-base", device=DEVICE
)
def setup_database():
try:
embedding_function = get_embedding_function()
dataset_collection = client.get_or_create_collection(
embedding_function=embedding_function,
name="dataset_cards",
metadata={"hnsw:space": "cosine"},
)
model_collection = client.get_or_create_collection(
embedding_function=embedding_function,
name="model_cards",
metadata={"hnsw:space": "cosine"},
)
# Load dataset data
df = pl.scan_parquet(
"hf://datasets/davanstrien/datasets_with_metadata_and_summaries/data/train-*.parquet"
)
df = df.filter(
pl.col("datasetId").str.contains_any(["open-llm-leaderboard-old/"]).not_()
)
df = df.filter(
pl.col("datasetId")
.str.contains_any(
["gemma-2-2B-it-thinking-function_calling-V0"]
) # course model that's not useful for retrieving
.not_()
)
# Get the most recent last_modified date from the collection
latest_update = None
if dataset_collection.count() > 0:
metadata = dataset_collection.get(include=["metadatas"]).get("metadatas")
logger.info(f"Found {len(metadata)} existing records in collection")
last_modifieds = [
dateutil.parser.parse(m.get("last_modified")) for m in metadata
]
latest_update = max(last_modifieds)
logger.info(f"Most recent record in DB from: {latest_update}")
logger.info(f"Oldest record in DB from: {min(last_modifieds)}")
# Filter and process only newer records
df = df.select(["datasetId", "summary", "likes", "downloads", "last_modified"])
# Log some stats about the incoming data
sample_dates = df.select("last_modified").limit(5).collect()
logger.info(f"Sample of incoming dates: {sample_dates}")
total_incoming = df.select(pl.len()).collect().item()
logger.info(f"Total incoming records: {total_incoming}")
if latest_update:
logger.info(f"Filtering records newer than {latest_update}")
df = df.filter(pl.col("last_modified") > latest_update)
filtered_count = df.select(pl.len()).collect().item()
logger.info(f"Found {filtered_count} records to update after filtering")
df = df.collect()
total_rows = len(df)
if total_rows > 0:
logger.info(f"Updating dataset collection with {total_rows} new records")
logger.info(
f"Date range of updates: {df['last_modified'].min()} to {df['last_modified'].max()}"
)
for i in range(0, total_rows, BATCH_SIZE):
batch_df = df.slice(i, min(BATCH_SIZE, total_rows - i))
batch_size = len(batch_df)
logger.info(
f"Processing batch {i // BATCH_SIZE + 1}: {batch_size} records "
f"({batch_df['last_modified'].min()} to {batch_df['last_modified'].max()})"
)
dataset_collection.upsert(
ids=batch_df.select(["datasetId"]).to_series().to_list(),
documents=batch_df.select(["summary"]).to_series().to_list(),
metadatas=[
{
"likes": int(likes),
"downloads": int(downloads),
"last_modified": str(last_modified),
}
for likes, downloads, last_modified in zip(
batch_df.select(["likes"]).to_series().to_list(),
batch_df.select(["downloads"]).to_series().to_list(),
batch_df.select(["last_modified"]).to_series().to_list(),
)
],
)
logger.info(f"Processed {i + batch_size:,} / {total_rows:,} records")
logger.info(
f"Database initialized with {dataset_collection.count():,} total rows"
)
# Load model data
model_df = pl.scan_parquet(
"hf://datasets/davanstrien/models_with_metadata_and_summaries/data/train-*.parquet"
)
model_row_count = model_df.select(pl.len()).collect().item()
logger.info(f"Row count of new model data: {model_row_count}")
if model_collection.count() < model_row_count:
model_df = model_df.select(
[
"modelId",
"summary",
"likes",
"downloads",
"last_modified",
"param_count",
]
)
model_df = model_df.collect()
total_rows = len(model_df)
for i in range(0, total_rows, BATCH_SIZE):
batch_df = model_df.slice(i, min(BATCH_SIZE, total_rows - i))
model_collection.upsert(
ids=batch_df.select(["modelId"]).to_series().to_list(),
documents=batch_df.select(["summary"]).to_series().to_list(),
metadatas=[
{
"likes": int(likes),
"downloads": int(downloads),
"last_modified": str(last_modified),
"param_count": int(param_count)
if param_count is not None
else 0,
}
for likes, downloads, last_modified, param_count in zip(
batch_df.select(["likes"]).to_series().to_list(),
batch_df.select(["downloads"]).to_series().to_list(),
batch_df.select(["last_modified"]).to_series().to_list(),
batch_df.select(["param_count"]).to_series().to_list(),
)
],
)
logger.info(
f"Processed {i + len(batch_df):,} / {total_rows:,} model rows"
)
logger.info(
f"Model database initialized with {model_collection.count():,} rows"
)
except Exception as e:
logger.error(f"Setup error: {e}")
# Run setup on startup
setup_database()
class QueryResult(BaseModel):
dataset_id: str
similarity: float
summary: str
likes: int
downloads: int
class QueryResponse(BaseModel):
results: List[QueryResult]
class ModelQueryResult(BaseModel):
model_id: str
similarity: float
summary: str
likes: int
downloads: int
param_count: Optional[int] = None
class ModelQueryResponse(BaseModel):
results: List[ModelQueryResult]
@app.get("/")
async def redirect_to_docs():
from fastapi.responses import RedirectResponse
return RedirectResponse(url="/docs")
@app.get("/search/datasets", response_model=QueryResponse)
@cache(ttl=CACHE_TTL)
async def search_datasets(
query: str,
k: int = Query(default=5, ge=1, le=100),
sort_by: str = Query(
default="similarity", enum=["similarity", "likes", "downloads", "trending"]
),
min_likes: int = Query(default=0, ge=0),
min_downloads: int = Query(default=0, ge=0),
):
try:
collection = client.get_collection(
name="dataset_cards", embedding_function=get_embedding_function()
)
results = collection.query(
query_texts=[f"search_query: {query}"],
n_results=k * 4 if sort_by != "similarity" else k,
where={
"$and": [
{"likes": {"$gte": min_likes}},
{"downloads": {"$gte": min_downloads}},
]
}
if min_likes > 0 or min_downloads > 0
else None,
)
query_results = await process_search_results(results, "dataset", k, sort_by)
return QueryResponse(results=query_results)
except Exception as e:
logger.error(f"Search error: {str(e)}")
raise HTTPException(status_code=500, detail="Search failed")
@app.get("/similarity/datasets", response_model=QueryResponse)
@cache(ttl=CACHE_TTL)
async def find_similar_datasets(
dataset_id: str,
k: int = Query(default=5, ge=1, le=100),
sort_by: str = Query(
default="similarity", enum=["similarity", "likes", "downloads", "trending"]
),
min_likes: int = Query(default=0, ge=0),
min_downloads: int = Query(default=0, ge=0),
):
try:
collection = client.get_collection("dataset_cards")
results = collection.get(ids=[dataset_id], include=["embeddings"])
if not results["ids"]:
raise HTTPException(
status_code=404, detail=f"Dataset ID '{dataset_id}' not found"
)
results = collection.query(
query_embeddings=[results["embeddings"][0]],
n_results=k * 4 if sort_by != "similarity" else k + 1,
where={
"$and": [
{"likes": {"$gte": min_likes}},
{"downloads": {"$gte": min_downloads}},
]
}
if min_likes > 0 or min_downloads > 0
else None,
)
query_results = await process_search_results(
results, "dataset", k, sort_by, dataset_id
)
return QueryResponse(results=query_results)
except HTTPException:
raise
except Exception as e:
logger.error(f"Similarity search error: {str(e)}")
raise HTTPException(status_code=500, detail="Similarity search failed")
@app.get("/search/models", response_model=ModelQueryResponse)
@cache(ttl=CACHE_TTL)
async def search_models(
query: str,
k: int = Query(default=5, ge=1, le=100),
sort_by: str = Query(
default="similarity", enum=["similarity", "likes", "downloads", "trending"]
),
min_likes: int = Query(default=0, ge=0),
min_downloads: int = Query(default=0, ge=0),
):
try:
collection = client.get_collection(
name="model_cards", embedding_function=get_embedding_function()
)
results = collection.query(
query_texts=[f"search_query: {query}"],
n_results=k * 4 if sort_by != "similarity" else k,
where={
"$and": [
{"likes": {"$gte": min_likes}},
{"downloads": {"$gte": min_downloads}},
]
}
if min_likes > 0 or min_downloads > 0
else None,
)
query_results = await process_search_results(results, "model", k, sort_by)
return ModelQueryResponse(results=query_results)
except Exception as e:
logger.error(f"Model search error: {str(e)}")
raise HTTPException(status_code=500, detail="Model search failed")
@app.get("/similarity/models", response_model=ModelQueryResponse)
@cache(ttl=CACHE_TTL)
async def find_similar_models(
model_id: str,
k: int = Query(default=5, ge=1, le=100),
sort_by: str = Query(
default="similarity", enum=["similarity", "likes", "downloads", "trending"]
),
min_likes: int = Query(default=0, ge=0),
min_downloads: int = Query(default=0, ge=0),
):
try:
collection = client.get_collection("model_cards")
results = collection.get(ids=[model_id], include=["embeddings"])
if not results["ids"]:
raise HTTPException(
status_code=404, detail=f"Model ID '{model_id}' not found"
)
results = collection.query(
query_embeddings=[results["embeddings"][0]],
n_results=k * 4 if sort_by != "similarity" else k + 1,
where={
"$and": [
{"likes": {"$gte": min_likes}},
{"downloads": {"$gte": min_downloads}},
]
}
if min_likes > 0 or min_downloads > 0
else None,
)
query_results = await process_search_results(
results, "model", k, sort_by, model_id
)
return ModelQueryResponse(results=query_results)
except HTTPException:
raise
except Exception as e:
logger.error(f"Model similarity search error: {str(e)}")
raise HTTPException(status_code=500, detail="Model similarity search failed")
@cache(ttl="1h")
async def get_trending_score(item_id: str, item_type: str) -> float:
"""Fetch trending score for a model or dataset from HuggingFace API"""
try:
async with httpx.AsyncClient() as client:
endpoint = "models" if item_type == "model" else "datasets"
response = await client.get(
f"https://huggingface.co/api/{endpoint}/{item_id}?expand=trendingScore"
)
response.raise_for_status()
return response.json().get("trendingScore", 0)
except Exception as e:
logger.error(
f"Error fetching trending score for {item_type} {item_id}: {str(e)}"
)
return 0
async def process_search_results(results, id_field, k, sort_by, exclude_id=None):
"""Process search results into a standardized format."""
query_results = []
# Create base results
for i in range(len(results["ids"][0])):
current_id = results["ids"][0][i]
if exclude_id and current_id == exclude_id:
continue
result = {
f"{id_field}_id": current_id,
"similarity": float(results["distances"][0][i]),
"summary": results["documents"][0][i],
"likes": results["metadatas"][0][i]["likes"],
"downloads": results["metadatas"][0][i]["downloads"],
}
# Add param_count for models if it exists in metadata
if id_field == "model" and "param_count" in results["metadatas"][0][i]:
result["param_count"] = results["metadatas"][0][i]["param_count"]
if id_field == "dataset":
query_results.append(QueryResult(**result))
else:
query_results.append(ModelQueryResult(**result))
# Handle sorting
if sort_by == "trending":
# Fetch trending scores for all results
trending_scores = {}
async with httpx.AsyncClient() as client:
tasks = [
get_trending_score(
getattr(result, f"{id_field}_id"),
"model" if id_field == "model" else "dataset",
)
for result in query_results
]
scores = await asyncio.gather(*tasks)
trending_scores = {
getattr(result, f"{id_field}_id"): score
for result, score in zip(query_results, scores)
}
# Sort by trending score
query_results.sort(
key=lambda x: trending_scores.get(getattr(x, f"{id_field}_id"), 0),
reverse=True,
)
query_results = query_results[:k]
elif sort_by != "similarity":
query_results.sort(key=lambda x: getattr(x, sort_by), reverse=True)
query_results = query_results[:k]
elif exclude_id: # We fetched extra for similarity + exclude_id case
query_results = query_results[:k]
return query_results
async def fetch_trending_models():
"""Fetch trending models from HuggingFace API"""
async with httpx.AsyncClient() as client:
response = await client.get("https://huggingface.co/api/models")
response.raise_for_status()
return response.json()
@cache(ttl=TRENDING_CACHE_TTL)
async def get_trending_models_with_summaries(
limit: int = 10,
min_likes: int = 0,
min_downloads: int = 0,
) -> List[ModelQueryResult]:
"""Fetch trending models and combine with summaries from database"""
try:
# Fetch trending models
trending_models = await fetch_trending_models()
# Filter by minimum likes/downloads
trending_models = [
model
for model in trending_models
if model.get("likes", 0) >= min_likes
and model.get("downloads", 0) >= min_downloads
]
# Sort by trending score and limit
trending_models = sorted(
trending_models, key=lambda x: x.get("trendingScore", 0), reverse=True
)[:limit]
# Get model IDs
model_ids = [model["modelId"] for model in trending_models]
# Fetch summaries from ChromaDB
collection = client.get_collection("model_cards")
summaries = collection.get(ids=model_ids, include=["documents", "metadatas"])
# Create mapping of model_id to summary and metadata
id_to_summary = dict(zip(summaries["ids"], summaries["documents"]))
id_to_metadata = dict(zip(summaries["ids"], summaries["metadatas"]))
# Combine data
results = []
for model in trending_models:
if model["modelId"] in id_to_summary:
metadata = id_to_metadata.get(model["modelId"], {})
result = ModelQueryResult(
model_id=model["modelId"],
similarity=1.0, # Not applicable for trending
summary=id_to_summary[model["modelId"]],
likes=model.get("likes", 0),
downloads=model.get("downloads", 0),
param_count=metadata.get("param_count"),
)
results.append(result)
return results
except Exception as e:
logger.error(f"Error fetching trending models: {str(e)}")
raise HTTPException(status_code=500, detail="Failed to fetch trending models")
@app.get("/trending/models", response_model=ModelQueryResponse)
async def get_trending_models(
limit: int = Query(default=10, ge=1, le=100),
min_likes: int = Query(default=0, ge=0),
min_downloads: int = Query(default=0, ge=0),
):
"""Get trending models with their summaries"""
results = await get_trending_models_with_summaries(
limit=limit, min_likes=min_likes, min_downloads=min_downloads
)
return ModelQueryResponse(results=results)
async def fetch_trending_datasets():
"""Fetch trending datasets from HuggingFace API"""
async with httpx.AsyncClient() as client:
response = await client.get("https://huggingface.co/api/datasets")
response.raise_for_status()
return response.json()
@cache(ttl=TRENDING_CACHE_TTL)
async def get_trending_datasets_with_summaries(
limit: int = 10,
min_likes: int = 0,
min_downloads: int = 0,
) -> List[QueryResult]:
"""Fetch trending datasets and combine with summaries from database"""
try:
# Fetch trending datasets
trending_datasets = await fetch_trending_datasets()
# Filter by minimum likes/downloads
trending_datasets = [
dataset
for dataset in trending_datasets
if dataset.get("likes", 0) >= min_likes
and dataset.get("downloads", 0) >= min_downloads
]
# Sort by trending score and limit
trending_datasets = sorted(
trending_datasets, key=lambda x: x.get("trendingScore", 0), reverse=True
)[:limit]
# Get dataset IDs
dataset_ids = [dataset["id"] for dataset in trending_datasets]
# Fetch summaries from ChromaDB
collection = client.get_collection("dataset_cards")
summaries = collection.get(ids=dataset_ids, include=["documents"])
# Create mapping of dataset_id to summary
id_to_summary = dict(zip(summaries["ids"], summaries["documents"]))
# Combine data
results = []
for dataset in trending_datasets:
if dataset["id"] in id_to_summary:
result = QueryResult(
dataset_id=dataset["id"],
similarity=1.0, # Not applicable for trending
summary=id_to_summary[dataset["id"]],
likes=dataset.get("likes", 0),
downloads=dataset.get("downloads", 0),
)
results.append(result)
return results
except Exception as e:
logger.error(f"Error fetching trending datasets: {str(e)}")
raise HTTPException(status_code=500, detail="Failed to fetch trending datasets")
@app.get("/trending/datasets", response_model=QueryResponse)
async def get_trending_datasets(
limit: int = Query(default=10, ge=1, le=100),
min_likes: int = Query(default=0, ge=0),
min_downloads: int = Query(default=0, ge=0),
):
"""Get trending datasets with their summaries"""
results = await get_trending_datasets_with_summaries(
limit=limit, min_likes=min_likes, min_downloads=min_downloads
)
return QueryResponse(results=results)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|