Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,051 Bytes
665f955 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 4d185df 2057a2c 79f2ae1 2057a2c 79f2ae1 de90bae 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 4d185df 79f2ae1 4d185df 79f2ae1 4d185df 79f2ae1 4d185df 9ed5b2c 79f2ae1 9ed5b2c 79f2ae1 9ed5b2c 79f2ae1 3408aae 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 9ed5b2c 2057a2c 79f2ae1 3408aae 79f2ae1 de90bae 79f2ae1 de90bae 79f2ae1 de90bae 79f2ae1 de90bae 79f2ae1 de90bae 3408aae 79f2ae1 3408aae 79f2ae1 3408aae 2057a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import logging
import os
from typing import List
import sys
import duckdb
from cashews import cache # Add this import
from fastapi import FastAPI, HTTPException, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer
from contextlib import asynccontextmanager
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # turn on HF_TRANSFER
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
LOCAL = False
if sys.platform == "darwin":
LOCAL = True
DATA_DIR = "data" if LOCAL else "/data"
# Configure cache
cache.setup("mem://", size_limit="4gb")
# Initialize FastAPI app
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup: nothing special needed here since model and DB are initialized at module level
yield
# Cleanup
await cache.close()
con.close()
app = FastAPI(lifespan=lifespan)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=[
"https://*.hf.space", # Allow all Hugging Face Spaces
"https://*.huggingface.co", # Allow all Hugging Face domains
# "http://localhost:5500", # Allow localhost:5500 # TODO remove before prod
],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize model and DuckDB
model = SentenceTransformer("nomic-ai/modernbert-embed-base", device="cpu")
embedding_dim = model.get_sentence_embedding_dimension()
# Database setup with fallback
db_path = f"{DATA_DIR}/vector_store.db"
try:
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(db_path), exist_ok=True)
con = duckdb.connect(db_path)
logger.info(f"Connected to persistent database at {db_path}")
except (OSError, PermissionError) as e:
logger.warning(
f"Could not create/access {db_path}. Falling back to in-memory database. Error: {e}"
)
con = duckdb.connect(":memory:")
# Initialize VSS extension
con.sql("INSTALL vss; LOAD vss;")
con.sql("SET hnsw_enable_experimental_persistence=true;")
def setup_database():
try:
# Create table with properly typed embeddings
con.sql(f"""
CREATE TABLE IF NOT EXISTS model_cards AS
SELECT *, embeddings::FLOAT[{embedding_dim}] as embeddings_float
FROM 'hf://datasets/davanstrien/outputs-embeddings/**/*.parquet';
""")
# Check if index exists
index_exists = (
con.sql("""
SELECT COUNT(*) as count
FROM duckdb_indexes
WHERE index_name = 'my_hnsw_index';
""").fetchone()[0]
> 0
)
if index_exists:
# Drop existing index
con.sql("DROP INDEX my_hnsw_index;")
logger.info("Dropped existing HNSW index")
# Create/Recreate HNSW index
con.sql("""
CREATE INDEX my_hnsw_index ON model_cards
USING HNSW (embeddings_float) WITH (metric = 'cosine');
""")
logger.info("Created/Recreated HNSW index")
# Log the number of rows in the database
row_count = con.sql("SELECT COUNT(*) as count FROM model_cards").fetchone()[0]
logger.info(f"Database initialized with {row_count:,} rows")
except Exception as e:
logger.error(f"Setup error: {e}")
# Run setup on startup
setup_database()
class QueryResult(BaseModel):
dataset_id: str
similarity: float
summary: str
likes: int
downloads: int
class QueryResponse(BaseModel):
results: List[QueryResult]
@app.get("/")
async def redirect_to_docs():
from fastapi.responses import RedirectResponse
return RedirectResponse(url="/docs")
@app.get("/search/datasets", response_model=QueryResponse)
@cache(ttl="10m")
async def search_datasets(query: str, k: int = Query(default=5, ge=1, le=100)):
try:
query_embedding = model.encode(f"search_query: {query}").tolist()
# Updated SQL query to include likes and downloads
result = con.sql(f"""
SELECT
datasetId as dataset_id,
1 - array_cosine_distance(
embeddings_float::FLOAT[{embedding_dim}],
{query_embedding}::FLOAT[{embedding_dim}]
) as similarity,
summary,
likes,
downloads
FROM model_cards
ORDER BY similarity DESC
LIMIT {k};
""").df()
# Updated result conversion
results = [
QueryResult(
dataset_id=row["dataset_id"],
similarity=float(row["similarity"]),
summary=row["summary"],
likes=int(row["likes"]),
downloads=int(row["downloads"]),
)
for _, row in result.iterrows()
]
return QueryResponse(results=results)
except Exception as e:
logger.error(f"Search error: {str(e)}")
raise HTTPException(status_code=500, detail="Search failed")
@app.get("/similarity/datasets", response_model=QueryResponse)
@cache(ttl="10m")
async def find_similar_datasets(
dataset_id: str, k: int = Query(default=5, ge=1, le=100)
):
try:
# First, get the embedding for the input dataset_id
reference_embedding = con.sql(f"""
SELECT embeddings_float
FROM model_cards
WHERE datasetId = '{dataset_id}'
LIMIT 1;
""").df()
if reference_embedding.empty:
raise HTTPException(
status_code=404, detail=f"Dataset ID '{dataset_id}' not found"
)
# Updated similarity search query to include likes and downloads
result = con.sql(f"""
SELECT
datasetId as dataset_id,
1 - array_cosine_distance(
embeddings_float::FLOAT[{embedding_dim}],
(SELECT embeddings_float FROM model_cards WHERE datasetId = '{dataset_id}' LIMIT 1)
) as similarity,
summary,
likes,
downloads
FROM model_cards
WHERE datasetId != '{dataset_id}'
ORDER BY similarity DESC
LIMIT {k};
""").df()
# Updated result conversion
results = [
QueryResult(
dataset_id=row["dataset_id"],
similarity=float(row["similarity"]),
summary=row["summary"],
likes=int(row["likes"]),
downloads=int(row["downloads"]),
)
for _, row in result.iterrows()
]
return QueryResponse(results=results)
except HTTPException:
raise
except Exception as e:
logger.error(f"Similarity search error: {str(e)}")
raise HTTPException(status_code=500, detail="Similarity search failed")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|