Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 11,122 Bytes
665f955 79f2ae1 7cf16e2 2057a2c 79f2ae1 2057a2c 79f2ae1 7cf16e2 2057a2c 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 4d185df 7cf16e2 2057a2c 79f2ae1 2057a2c 7cf16e2 de90bae 7cf16e2 79f2ae1 2057a2c 79f2ae1 2057a2c 79f2ae1 7cf16e2 79f2ae1 4d185df 7cf16e2 79f2ae1 7cf16e2 79f2ae1 4d185df 79f2ae1 4d185df 9ed5b2c 79f2ae1 9ed5b2c 79f2ae1 9ed5b2c 79f2ae1 3408aae 79f2ae1 7cf16e2 2057a2c 7cf16e2 2057a2c 7cf16e2 2057a2c 79f2ae1 9ed5b2c 2057a2c 79f2ae1 7cf16e2 79f2ae1 3408aae 7cf16e2 de90bae 79f2ae1 de90bae 7cf16e2 de90bae 7cf16e2 3408aae 79f2ae1 3408aae 79f2ae1 3408aae 2057a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import logging
import os
from typing import List
import sys
import chromadb
from chromadb.utils import embedding_functions
from cashews import cache
from fastapi import FastAPI, HTTPException, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from contextlib import asynccontextmanager
import polars as pl
from huggingface_hub import hf_hub_url, DatasetCard, ModelCard, HfApi
from datetime import datetime, timedelta
from typing import Generator
from huggingface_hub import ModelInfo, DatasetInfo
import stamina
import logging
import polars as pl
from huggingface_hub import dataset_info
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer
import stamina
from tqdm.contrib.concurrent import thread_map
from datasets import Dataset, Value, Sequence
import datasets
import os
from dotenv import load_dotenv
from huggingface_hub import get_inference_endpoint
from huggingface_hub import AsyncInferenceClient
import asyncio
from typing import List
hf_api = HfApi()
tokenizer = AutoTokenizer.from_pretrained(
"davanstrien/SmolLM2-360M-tldr-sft-2025-02-12_15-13"
)
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # turn on HF_TRANSFER
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
LOCAL = False
if sys.platform == "darwin":
LOCAL = True
DATA_DIR = "data" if LOCAL else "/data"
# Configure cache
cache.setup("mem://", size_limit="4gb")
# Initialize ChromaDB client
client = chromadb.PersistentClient(path=f"{DATA_DIR}/chroma")
# Initialize FastAPI app
@asynccontextmanager
async def lifespan(app: FastAPI):
# Setup
setup_database()
yield
# Cleanup
await cache.close()
app = FastAPI(lifespan=lifespan)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=[
"https://*.hf.space", # Allow all Hugging Face Spaces
"https://*.huggingface.co", # Allow all Hugging Face domains
# "http://localhost:5500", # Allow localhost:5500 # TODO remove before prod
],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Define the embedding function at module level
def get_embedding_function():
return embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="nomic-ai/modernbert-embed-base"
)
def setup_database():
try:
embedding_function = get_embedding_function()
# Create collection with embedding function
dataset_collection = client.get_or_create_collection(
embedding_function=embedding_function,
name="dataset_cards",
metadata={"hnsw:space": "cosine"},
)
# TODO incremental updates
df = pl.scan_parquet(
"hf://datasets/davanstrien/datasets_with_metadata_and_summaries/data/train-*.parquet"
)
df = df.filter(
pl.col("datasetId").str.contains_any(["open-llm-leaderboard-old/"]).not_()
)
row_count = df.select(pl.len()).collect().item()
logger.info(f"Row count of new data: {row_count}")
if dataset_collection.count() < row_count:
# Load parquet files and upsert into ChromaDB
df = df.select(
["datasetId", "summary", "likes", "downloads", "last_modified"]
)
df = df.collect()
BATCH_SIZE = 1000
total_rows = len(df)
for i in range(0, total_rows, BATCH_SIZE):
batch_df = df.slice(i, min(BATCH_SIZE, total_rows - i))
dataset_collection.upsert(
ids=batch_df.select(["datasetId"]).to_series().to_list(),
documents=batch_df.select(["summary"]).to_series().to_list(),
metadatas=[
{
"likes": int(likes),
"downloads": int(downloads),
"last_modified": str(last_modified),
}
for likes, downloads, last_modified in zip(
batch_df.select(["likes"]).to_series().to_list(),
batch_df.select(["downloads"]).to_series().to_list(),
batch_df.select(["last_modified"]).to_series().to_list(),
)
],
)
logger.info(f"Processed {i + len(batch_df):,} / {total_rows:,} rows")
logger.info(f"Database initialized with {dataset_collection.count():,} rows")
# model_collection = client.get_or_create_collection(
# embedding_function=embedding_function,
# name="model_cards",
# metadata={"hnsw:space": "cosine"},
# )
# # If collection is empty, load data from parquet files
# if model_collection.count() == 0:
# # Load parquet files and insert into ChromaDB
# df = pl.scan_parquet(
# "hf://datasets/librarian-bots/model_cards_with_metadata/data/train-*.parquet"
# )
# df = df.select(["modelId", "likes", "downloads"])
# df = df.collect()
# df = df.sample(n=1000) # TODO remove for prod
# # Process in batches of 1000
# BATCH_SIZE = 1000
# total_rows = len(df)
# for i in range(0, total_rows, BATCH_SIZE):
# batch_df = df.slice(i, min(BATCH_SIZE, total_rows - i))
# model_collection.add(
# ids=batch_df.select(["modelId"]).to_series().to_list(),
# documents=batch_df.select(["summary"]).to_series().to_list(),
# metadatas=[
# {"likes": int(likes), "downloads": int(downloads)}
# for likes, downloads in zip(
# batch_df.select(["likes"]).to_series().to_list(),
# batch_df.select(["downloads"]).to_series().to_list(),
# )
# ],
# )
# logger.info(f"Processed {i + len(batch_df):,} / {total_rows:,} rows")
# logger.info(f"Database initialized with {model_collection.count():,} rows")
except Exception as e:
logger.error(f"Setup error: {e}")
# Run setup on startup
setup_database()
class QueryResult(BaseModel):
dataset_id: str
similarity: float
summary: str
likes: int
downloads: int
class QueryResponse(BaseModel):
results: List[QueryResult]
@app.get("/")
async def redirect_to_docs():
from fastapi.responses import RedirectResponse
return RedirectResponse(url="/docs")
@app.get("/search/datasets", response_model=QueryResponse)
@cache(ttl="10m")
async def search_datasets(
query: str,
k: int = Query(default=5, ge=1, le=100),
sort_by: str = Query(
default="similarity", enum=["similarity", "likes", "downloads"]
),
min_likes: int = Query(default=0, ge=0),
min_downloads: int = Query(default=0, ge=0),
):
try:
# Get collection with proper embedding function
collection = client.get_collection(
name="dataset_cards", embedding_function=get_embedding_function()
)
# Query ChromaDB
results = collection.query(
query_texts=[f"search_query: {query}"],
n_results=k * 4 if sort_by != "similarity" else k,
where={
"$and": [
{"likes": {"$gte": min_likes}},
{"downloads": {"$gte": min_downloads}},
]
}
if min_likes > 0 or min_downloads > 0
else None,
)
# Process results
query_results = []
for i in range(len(results["ids"][0])):
query_results.append(
QueryResult(
dataset_id=results["ids"][0][i],
similarity=float(results["distances"][0][i]),
summary=results["documents"][0][i],
likes=results["metadatas"][0][i]["likes"],
downloads=results["metadatas"][0][i]["downloads"],
)
)
# Sort results if needed
if sort_by != "similarity":
query_results.sort(key=lambda x: getattr(x, sort_by), reverse=True)
query_results = query_results[:k]
return QueryResponse(results=query_results)
except Exception as e:
logger.error(f"Search error: {str(e)}")
raise HTTPException(status_code=500, detail="Search failed")
@app.get("/similarity/datasets", response_model=QueryResponse)
@cache(ttl="10m")
async def find_similar_datasets(
dataset_id: str,
k: int = Query(default=5, ge=1, le=100),
sort_by: str = Query(
default="similarity", enum=["similarity", "likes", "downloads"]
),
min_likes: int = Query(default=0, ge=0),
min_downloads: int = Query(default=0, ge=0),
):
try:
collection = client.get_collection("dataset_cards")
# Get the reference document
results = collection.get(ids=[dataset_id], include=["embeddings"])
if not results["ids"]:
raise HTTPException(
status_code=404, detail=f"Dataset ID '{dataset_id}' not found"
)
# Query using the embedding
results = collection.query(
query_embeddings=[results["embeddings"][0]],
n_results=k * 4
if sort_by != "similarity"
else k + 1, # +1 to account for self-match
where={
"$and": [
{"likes": {"$gte": min_likes}},
{"downloads": {"$gte": min_downloads}},
]
}
if min_likes > 0 or min_downloads > 0
else None,
)
# Process results (excluding the query dataset itself)
query_results = []
for i in range(len(results["ids"][0])):
if results["ids"][0][i] != dataset_id:
query_results.append(
QueryResult(
dataset_id=results["ids"][0][i],
similarity=float(results["distances"][0][i]),
summary=results["documents"][0][i],
likes=results["metadatas"][0][i]["likes"],
downloads=results["metadatas"][0][i]["downloads"],
)
)
# Sort results if needed
if sort_by != "similarity":
query_results.sort(key=lambda x: getattr(x, sort_by), reverse=True)
query_results = query_results[:k]
else:
query_results = query_results[:k]
return QueryResponse(results=query_results)
except HTTPException:
raise
except Exception as e:
logger.error(f"Similarity search error: {str(e)}")
raise HTTPException(status_code=500, detail="Similarity search failed")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|