Spaces:
Sleeping
Sleeping
File size: 12,851 Bytes
a23bdc6 0a408c8 6e35819 a23bdc6 83afd54 3a7a44c a23bdc6 aae6306 0a408c8 a23bdc6 6e35819 0d42969 312213e a23bdc6 3a7a44c 0a408c8 a23bdc6 543bed3 a23bdc6 0a408c8 a23bdc6 09d4cda 3a7a44c a23bdc6 ce6489b a23bdc6 ce6489b 714c819 0a408c8 a23bdc6 0a408c8 a23bdc6 0a408c8 543bed3 aae6306 3a7a44c ce6489b ea99c1c ce6489b 83afd54 a23bdc6 47fda11 5cca310 a23bdc6 312213e 09d4cda 3a7a44c 873b70f 0a408c8 873b70f 3a7a44c 873b70f 3a7a44c 873b70f 0a408c8 5cca310 3a7a44c 0a408c8 5cca310 3a7a44c 5cca310 3a7a44c 5cca310 0a408c8 a23bdc6 3a7a44c a23bdc6 5cca310 3a7a44c 5cca310 3a7a44c ce6489b 3a7a44c a23bdc6 3a7a44c a23bdc6 3a7a44c 0a408c8 3a7a44c a23bdc6 312213e a23bdc6 5f4f31d 3a7a44c 5f4f31d 0a408c8 a23bdc6 543bed3 a23bdc6 09d4cda a23bdc6 6e35819 0a408c8 6e35819 543bed3 6e35819 543bed3 6e35819 0d42969 a23bdc6 6e35819 543bed3 6e35819 0a408c8 6e35819 543bed3 6e35819 a23bdc6 ce6489b 312213e 0a408c8 312213e ce6489b 5f4f31d 0a408c8 5f4f31d ce6489b a23bdc6 5f4f31d 0a408c8 6e35819 312213e 0a408c8 a23bdc6 0a408c8 6e35819 0a408c8 a23bdc6 312213e a23bdc6 0d42969 83afd54 312213e 0d42969 a23bdc6 83afd54 a23bdc6 09d4cda 6e35819 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import asyncio
import logging
import gradio as gr
import pandas as pd
from data_access import get_questions, get_source_finders, get_run_ids, get_baseline_rankers, \
get_unified_sources, get_source_text, calculate_cumulative_statistics_for_all_questions, get_metadata, \
get_async_connection
logger = logging.getLogger(__name__)
ALL_QUESTIONS_STR = "All questions"
# Initialize data at the module level
questions = []
source_finders = []
questions_dict = {}
source_finders_dict = {}
question_options = []
baseline_rankers_dict = {}
baseline_ranker_options = []
run_ids = []
available_run_id_dict = {}
finder_options = []
previous_run_id = "initial_run"
run_id_options = []
run_id_dropdown = None
# Get all questions
# Initialize data in a single async function
async def initialize_data():
global questions, source_finders, questions_dict, source_finders_dict, question_options, finder_options, baseline_rankers_dict, source_finders_dict, baseline_ranker_options
async with get_async_connection() as conn:
# Get questions and source finders
questions = await get_questions(conn)
source_finders = await get_source_finders(conn)
baseline_rankers = await get_baseline_rankers(conn)
# Convert to dictionaries for easier lookup
questions_dict = {q["text"]: q["id"] for q in questions}
baseline_rankers_dict = {f["name"]: f["id"] for f in baseline_rankers}
source_finders_dict = {f["name"]: f["id"] for f in source_finders}
# Create formatted options for dropdowns
question_options = [q['text'] for q in questions]
finder_options = [s["name"] for s in source_finders]
baseline_ranker_options = [b["name"] for b in baseline_rankers]
await update_run_ids_async(ALL_QUESTIONS_STR, list(source_finders_dict.keys())[0])
def update_run_ids(question_option, source_finder_name):
return asyncio.run(update_run_ids_async(question_option, source_finder_name))
async def update_run_ids_async(question_option, source_finder_name):
global previous_run_id, available_run_id_dict, run_id_options
async with get_async_connection() as conn:
finder_id_int = source_finders_dict.get(source_finder_name)
if question_option and question_option != ALL_QUESTIONS_STR:
question_id = questions_dict.get(question_option)
available_run_id_dict = await get_run_ids(conn, finder_id_int, question_id)
else:
available_run_id_dict = await get_run_ids(conn, finder_id_int)
run_id = list(available_run_id_dict.keys())[0]
previous_run_id = run_id
run_id_options = list(available_run_id_dict.keys())
return None, None, gr.Dropdown(choices=run_id_options,
value=run_id), "Select Question to see results", ""
def update_sources_list(question_option, source_finder_id, run_id: str, baseline_ranker_id: str,
evt: gr.EventData = None):
global previous_run_id
if evt:
logger.info(f"event: {evt.target.elem_id}")
if evt.target.elem_id == "run_id_dropdown" and (type(run_id) == list or run_id == previous_run_id):
return gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip()
if type(run_id) == str:
previous_run_id = run_id
return asyncio.run(update_sources_list_async(question_option, source_finder_id, run_id, baseline_ranker_id))
# Main function to handle UI interactions
async def update_sources_list_async(question_option, source_finder_name, run_id, baseline_ranker_name: str):
global available_run_id_dict, previous_run_id
if not question_option:
return gr.skip(), gr.skip(), gr.skip(), "No question selected", ""
logger.info("processing update")
async with get_async_connection() as conn:
if type(baseline_ranker_name) == list:
baseline_ranker_name = baseline_ranker_name[0]
baseline_ranker_id_int = 1 if len(baseline_ranker_name) == 0 else baseline_rankers_dict.get(
baseline_ranker_name)
if len(source_finder_name):
finder_id_int = source_finders_dict.get(source_finder_name)
else:
finder_id_int = None
if question_option == ALL_QUESTIONS_STR:
if finder_id_int:
if run_id is None:
available_run_id_dict = await get_run_ids(conn, finder_id_int)
run_id = list(available_run_id_dict.keys())[0]
previous_run_id = run_id
run_id_int = available_run_id_dict.get(run_id)
all_stats = await calculate_cumulative_statistics_for_all_questions(conn, run_id_int,
baseline_ranker_id_int)
else:
run_id_options = list(available_run_id_dict.keys())
all_stats = None
run_id_options = list(available_run_id_dict.keys())
return None, all_stats, gr.Dropdown(choices=run_id_options,
value=run_id), "Select Run Id and source finder to see results", ""
# Extract question ID from selection
question_id = questions_dict.get(question_option)
available_run_id_dict = await get_run_ids(conn, finder_id_int, question_id)
run_id_options = list(available_run_id_dict.keys())
if run_id not in run_id_options:
run_id = run_id_options[0]
previous_run_id = run_id
run_id_int = available_run_id_dict.get(run_id)
source_runs = None
stats = None
# Get source runs data
if finder_id_int:
source_runs, stats = await get_unified_sources(conn, question_id, run_id_int, baseline_ranker_id_int)
# Create DataFrame for display
df = pd.DataFrame(source_runs)
if not source_runs:
return None, None, run_id_options, "No results found for the selected filters",
# Format table columns
columns_to_display = ['sugya_id', 'in_baseline', 'baseline_rank', 'in_source_run', 'source_run_rank',
'tractate',
'folio', 'reason']
df_display = df[columns_to_display] if all(col in df.columns for col in columns_to_display) else df
# CSV for download
# csv_data = df.to_csv(index=False)
metadata = await get_metadata(conn, question_id, run_id_int)
result_message = f"Found {len(source_runs)} results"
return df_display, stats, gr.Dropdown(choices=run_id_options, value=run_id), result_message, metadata
# Add a new function to handle row selection
async def handle_row_selection_async(evt: gr.SelectData):
if evt is None or evt.value is None:
return "No source selected"
try:
# Get the ID from the selected row
tractate_chunk_id = evt.row_value[0]
# Get the source text
async with get_async_connection() as conn:
text = await get_source_text(conn, tractate_chunk_id)
return text
except Exception as e:
return f"Error retrieving source text: {str(e)}"
def handle_row_selection(evt: gr.SelectData):
return asyncio.run(handle_row_selection_async(evt))
# Create Gradio app
# Ensure we clean up when done
async def main():
global run_id_dropdown
await initialize_data()
with gr.Blocks(title="Source Runs Explorer", theme=gr.themes.Citrus()) as app:
gr.Markdown("# Source Runs Explorer")
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
with gr.Column(scale=1):
# Main content area
question_dropdown = gr.Dropdown(
choices=[ALL_QUESTIONS_STR] + question_options,
label="Select Question",
value=None,
interactive=True,
elem_id="question_dropdown"
)
with gr.Column(scale=1):
baseline_rankers_dropdown = gr.Dropdown(
choices=baseline_ranker_options,
label="Select Baseline Ranker",
interactive=True,
elem_id="baseline_rankers_dropdown"
)
with gr.Row():
with gr.Column(scale=1):
source_finder_dropdown = gr.Dropdown(
choices=finder_options,
label="Source Finder",
interactive=True,
elem_id="source_finder_dropdown"
)
with gr.Column(scale=1):
run_id_dropdown = gr.Dropdown(
choices=run_id_options,
allow_custom_value=True,
label="Run id for Question and source finder",
interactive=True,
elem_id="run_id_dropdown"
)
with gr.Column(scale=1):
# Sidebar area
gr.Markdown("### About")
gr.Markdown("This tool allows you to explore source runs for Talmudic questions.")
gr.Markdown("### Statistics")
gr.Markdown(f"Total Questions: {len(questions)}")
gr.Markdown(f"Source Finders: {len(source_finders)}")
with gr.Row():
result_text = gr.Markdown("Select a question to view source runs")
with gr.Row():
gr.Markdown("# Source Run Statistics")
with gr.Row():
statistics_table = gr.DataFrame(
headers=["num_high_ranked_baseline_sources",
"num_high_ranked_found_sources",
"overlap_count",
"overlap_percentage",
"high_ranked_overlap_count",
"high_ranked_overlap_percentage"
],
interactive=False,
)
with gr.Row():
metadata_text = gr.TextArea(
label="Metadata of Source Finder for Selected Question",
elem_id="metadata",
lines=2
)
with gr.Row():
gr.Markdown("# Sources Found")
with gr.Row():
with gr.Column(scale=3):
results_table = gr.DataFrame(
headers=['id', 'tractate', 'folio', 'in_baseline', 'baseline_rank', 'in_source_run',
'source_run_rank', 'source_reason', 'metadata'],
interactive=False
)
with gr.Column(scale=1):
source_text = gr.TextArea(
value="Text of the source will appear here",
lines=15,
label="Source Text",
interactive=False,
elem_id="source_text"
)
# download_button = gr.DownloadButton(
# label="Download Results as CSV",
# interactive=True,
# visible=True
# )
# Set up event handlers
results_table.select(
handle_row_selection,
inputs=None,
outputs=source_text
)
baseline_rankers_dropdown.change(
update_sources_list,
inputs=[question_dropdown, source_finder_dropdown, run_id_dropdown, baseline_rankers_dropdown],
outputs=[results_table, statistics_table, run_id_dropdown, result_text, metadata_text]
)
question_dropdown.change(
update_sources_list,
inputs=[question_dropdown, source_finder_dropdown, run_id_dropdown, baseline_rankers_dropdown],
outputs=[results_table, statistics_table, run_id_dropdown, result_text, metadata_text]
)
source_finder_dropdown.change(
update_run_ids,
inputs=[question_dropdown, source_finder_dropdown],
# outputs=[run_id_dropdown, results_table, result_text, download_button]
outputs=[results_table, statistics_table, run_id_dropdown, result_text, metadata_text]
)
run_id_dropdown.change(
update_sources_list,
inputs=[question_dropdown, source_finder_dropdown, run_id_dropdown, baseline_rankers_dropdown],
outputs=[results_table, statistics_table, run_id_dropdown, result_text, metadata_text]
)
app.queue()
app.launch()
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
asyncio.run(main())
|