File size: 1,443 Bytes
ccdfaf9
 
 
 
71456b2
ccdfaf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3be4587
 
 
ccdfaf9
3be4587
ccdfaf9
 
 
 
3be4587
 
ccdfaf9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from datasets import load_dataset
from ragatouille import RAGPretrainedModel
import gradio as gr

dataset=load_dataset("davidr70/megillah_english_sugyot")
documents = []
document_ids = []
metadatas = []
for row in dataset['train']:
    document_id = row['id']
    if document_id not in document_ids:
        document_ids.append(document_id)
        documents.append(row['content'])
        metadatas.append(row['metadata'])

RAG = RAGPretrainedModel.from_pretrained("answerdotai/answerai-colbert-small-v1")

index_path = RAG.index(
    index_name="menachot_small_model",
    collection=documents,
    document_ids=document_ids,
    document_metadatas=metadatas
)


def ask(question):
    results = RAG.search(question)
    full_result = ""
    for result in results:
        output = f"document_id: {result['document_id']}\nscore: {str(result['score'])}\nrank: {str(result['rank'])}\ntext: {result['content']}\n\n\n"
        full_result += output
    return full_result


with gr.Blocks(title="Megillah Search") as demo:
    gr.Markdown("# Megillah Search")
    gr.Markdown("Search through the Megillah dataset")

    question = gr.Textbox(label="Question", placeholder="Ask a question about Megillah...")
    submit_btn = gr.Button("Search")
    answer = gr.Textbox(label="Sources", lines=20)

    submit_btn.click(fn=ask, inputs=question, outputs=answer)
    question.submit(fn=ask, inputs=question, outputs=answer)
demo.launch(share=True)