Spaces:
Sleeping
Sleeping
from datasets import load_dataset | |
from ragatouille import RAGPretrainedModel | |
import gradio as gr | |
dataset=load_dataset("davidr70/megillah_english_sugyot") | |
documents = [] | |
document_ids = [] | |
metadatas = [] | |
for row in dataset['train']: | |
document_id = row['id'] | |
if document_id not in document_ids: | |
document_ids.append(document_id) | |
documents.append(row['content']) | |
metadatas.append(row['metadata']) | |
RAG = RAGPretrainedModel.from_pretrained("answerdotai/answerai-colbert-small-v1") | |
index_path = RAG.index( | |
index_name="menachot_small_model", | |
collection=documents, | |
document_ids=document_ids, | |
document_metadatas=metadatas | |
) | |
def ask(question): | |
results = RAG.search(question) | |
full_result = "" | |
for result in results: | |
output = f"document_id: {result['document_id']}\nscore: {str(result['score'])}\nrank: {str(result['rank'])}\ntext: {result['content']}\n\n\n" | |
full_result += output | |
return full_result | |
with gr.Blocks(title="Megillah Search") as demo: | |
gr.Markdown("# Megillah Search") | |
gr.Markdown("Search through the Megillah dataset") | |
question = gr.Textbox(label="Question", placeholder="Ask a question about Megillah...") | |
submit_btn = gr.Button("Search") | |
answer = gr.Textbox(label="Sources", lines=20) | |
submit_btn.click(fn=ask, inputs=question, outputs=answer) | |
question.submit(fn=ask, inputs=question, outputs=answer) | |
demo.launch(share=True) | |