Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import copy | |
import random | |
import numpy as np | |
# Diffusion util | |
# ------------------------------------------------------------------------ | |
def encode_prompt(prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train=True): | |
prompt_embeds_list = [] | |
captions = [] | |
for caption in prompt_batch: | |
if random.random() < proportion_empty_prompts: | |
captions.append("") | |
elif isinstance(caption, str): | |
captions.append(caption) | |
elif isinstance(caption, (list, np.ndarray)): | |
# take a random caption if there are multiple | |
captions.append(random.choice(caption) if is_train else caption[0]) | |
with torch.no_grad(): | |
for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
text_inputs = tokenizer( | |
captions, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
prompt_embeds = text_encoder( | |
text_input_ids.to(text_encoder.device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
pooled_prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.hidden_states[-2] | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) | |
prompt_embeds_list.append(prompt_embeds) | |
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) | |
return prompt_embeds, pooled_prompt_embeds | |
def compute_embeddings( | |
prompt_batch, original_sizes, crop_coords, proportion_empty_prompts, text_encoders, tokenizers, is_train=True, | |
device='cuda' | |
): | |
target_size = (1024, 1024) | |
original_sizes = original_sizes #list(map(list, zip(*original_sizes))) | |
crops_coords_top_left = crop_coords #list(map(list, zip(*crop_coords))) | |
original_sizes = torch.tensor(original_sizes, dtype=torch.long) | |
crops_coords_top_left = torch.tensor(crops_coords_top_left, dtype=torch.long) | |
prompt_embeds, pooled_prompt_embeds = encode_prompt( | |
prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train | |
) | |
add_text_embeds = pooled_prompt_embeds | |
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids | |
add_time_ids = list(target_size) | |
add_time_ids = torch.tensor([add_time_ids]) | |
add_time_ids = add_time_ids.repeat(len(prompt_batch), 1) | |
add_time_ids = torch.cat([original_sizes, crops_coords_top_left, add_time_ids], dim=-1) | |
add_time_ids = add_time_ids.to(device, dtype=prompt_embeds.dtype) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs} | |
def extract_into_tensor(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32): | |
""" | |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
timesteps (`torch.Tensor`): | |
generate embedding vectors at these timesteps | |
embedding_dim (`int`, *optional*, defaults to 512): | |
dimension of the embeddings to generate | |
dtype: | |
data type of the generated embeddings | |
Returns: | |
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def predicted_origin(model_output, timesteps, boundary_timesteps, sample, prediction_type, alphas, sigmas): | |
sigmas_s = extract_into_tensor(sigmas, boundary_timesteps, sample.shape) | |
alphas_s = extract_into_tensor(alphas, boundary_timesteps, sample.shape) | |
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape) | |
alphas = extract_into_tensor(alphas, timesteps, sample.shape) | |
# Set hard boundaries to ensure equivalence with forward (direct) CD | |
alphas_s[boundary_timesteps == 0] = 1.0 | |
sigmas_s[boundary_timesteps == 0] = 0.0 | |
if prediction_type == "epsilon": | |
pred_x_0 = (sample - sigmas * model_output) / alphas # x0 prediction | |
pred_x_0 = alphas_s * pred_x_0 + sigmas_s * model_output # Euler step to the boundary step | |
elif prediction_type == "v_prediction": | |
assert boundary_timesteps == 0, "v_prediction does not support multiple endpoints at the moment" | |
pred_x_0 = alphas * sample - sigmas * model_output | |
else: | |
raise ValueError(f"Prediction type {prediction_type} currently not supported.") | |
return pred_x_0 | |
class DDIMSolver: | |
def __init__( | |
self, alpha_cumprods, timesteps=1000, ddim_timesteps=50, | |
num_endpoints=1, num_inverse_endpoints=1, | |
max_inverse_timestep_index=49, | |
endpoints=None, inverse_endpoints=None | |
): | |
# DDIM sampling parameters | |
step_ratio = timesteps // ddim_timesteps | |
self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype( | |
np.int64) - 1 # [19, ..., 999] | |
self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps] | |
self.ddim_alpha_cumprods_prev = np.asarray( | |
[alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist() | |
) | |
self.ddim_alpha_cumprods_next = np.asarray( | |
alpha_cumprods[self.ddim_timesteps[1:]].tolist() + [0.0] | |
) | |
# convert to torch tensors | |
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long() | |
self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods) | |
self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev) | |
self.ddim_alpha_cumprods_next = torch.from_numpy(self.ddim_alpha_cumprods_next) | |
# Set endpoints for direct CTM | |
if endpoints is None: | |
timestep_interval = ddim_timesteps // num_endpoints + int(ddim_timesteps % num_endpoints > 0) | |
endpoint_idxs = torch.arange(timestep_interval, ddim_timesteps, timestep_interval) - 1 | |
self.endpoints = torch.tensor([0] + self.ddim_timesteps[endpoint_idxs].tolist()) | |
else: | |
self.endpoints = torch.tensor([int(endpoint) for endpoint in endpoints.split(',')]) | |
assert len(self.endpoints) == num_endpoints | |
# Set endpoints for inverse CTM | |
if inverse_endpoints is None: | |
timestep_interval = ddim_timesteps // num_inverse_endpoints + int( | |
ddim_timesteps % num_inverse_endpoints > 0) | |
inverse_endpoint_idxs = torch.arange(timestep_interval, ddim_timesteps, timestep_interval) - 1 | |
inverse_endpoint_idxs = torch.tensor(inverse_endpoint_idxs.tolist() + [max_inverse_timestep_index]) | |
self.inverse_endpoints = self.ddim_timesteps[inverse_endpoint_idxs] | |
else: | |
self.inverse_endpoints = torch.tensor([int(endpoint) for endpoint in inverse_endpoints.split(',')]) | |
assert len(self.inverse_endpoints) == num_inverse_endpoints | |
def to(self, device): | |
self.endpoints = self.endpoints.to(device) | |
self.inverse_endpoints = self.inverse_endpoints.to(device) | |
self.ddim_timesteps = self.ddim_timesteps.to(device) | |
self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device) | |
self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device) | |
self.ddim_alpha_cumprods_next = self.ddim_alpha_cumprods_next.to(device) | |
return self | |
def ddim_step(self, pred_x0, pred_noise, timestep_index): | |
alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape) | |
dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise | |
x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt | |
return x_prev | |
def inverse_ddim_step(self, pred_x0, pred_noise, timestep_index): | |
alpha_cumprod_next = extract_into_tensor(self.ddim_alpha_cumprods_next, timestep_index, pred_x0.shape) | |
dir_xt = (1.0 - alpha_cumprod_next).sqrt() * pred_noise | |
x_next = alpha_cumprod_next.sqrt() * pred_x0 + dir_xt | |
return x_next | |
# ------------------------------------------------------------------------ | |
# Distillation specific | |
# ------------------------------------------------------------------------ | |
def inverse_sample_deterministic( | |
pipe, | |
images, | |
prompt, | |
generator=None, | |
num_scales=50, | |
num_inference_steps=1, | |
timesteps=None, | |
start_timestep=19, | |
max_inverse_timestep_index=49, | |
return_start_latent=False, | |
guidance_scale=None, # Used only if the student has w_embedding | |
compute_embeddings_fn=None, | |
is_sdxl=False, | |
inverse_endpoints=None, | |
seed=0, | |
): | |
# assert isinstance(pipe, StableDiffusionImg2ImgPipeline), f"Does not support the pipeline {type(pipe)}" | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
device = pipe._execution_device | |
# Prepare text embeddings | |
if compute_embeddings_fn is not None: | |
if is_sdxl: | |
orig_size = [(1024, 1024)] * len(prompt) | |
crop_coords = [(0, 0)] * len(prompt) | |
encoded_text = compute_embeddings_fn(prompt, orig_size, crop_coords) | |
prompt_embeds = encoded_text.pop("prompt_embeds") | |
else: | |
prompt_embeds = compute_embeddings_fn(prompt)["prompt_embeds"] | |
encoded_text = {} | |
prompt_embeds = prompt_embeds.to(pipe.unet.dtype) | |
else: | |
prompt_embeds = pipe.encode_prompt(prompt, device, 1, False)[0] | |
encoded_text = {} | |
assert prompt_embeds.dtype == pipe.unet.dtype | |
# Prepare the DDIM solver | |
endpoints = ','.join(['0'] + inverse_endpoints.split(',')[:-1]) if inverse_endpoints is not None else None | |
solver = DDIMSolver( | |
pipe.scheduler.alphas_cumprod.cpu().numpy(), | |
timesteps=pipe.scheduler.num_train_timesteps, | |
ddim_timesteps=num_scales, | |
num_endpoints=num_inference_steps, | |
num_inverse_endpoints=num_inference_steps, | |
max_inverse_timestep_index=max_inverse_timestep_index, | |
endpoints=endpoints, | |
inverse_endpoints=inverse_endpoints | |
).to(device) | |
if timesteps is None: | |
timesteps = solver.inverse_endpoints.flip(0) | |
boundary_timesteps = solver.endpoints.flip(0) | |
else: | |
timesteps, boundary_timesteps = timesteps, timesteps | |
boundary_timesteps = boundary_timesteps[1:] + [boundary_timesteps[0]] | |
boundary_timesteps[-1] = 999 | |
timesteps, boundary_timesteps = torch.tensor(timesteps), torch.tensor(boundary_timesteps) | |
alpha_schedule = torch.sqrt(pipe.scheduler.alphas_cumprod).to(device) | |
sigma_schedule = torch.sqrt(1 - pipe.scheduler.alphas_cumprod).to(device) | |
# 5. Prepare latent variables | |
num_channels_latents = pipe.unet.config.in_channels | |
start_latents = pipe.prepare_latents( | |
images, timesteps[0], batch_size, 1, prompt_embeds.dtype, device, | |
generator=torch.Generator().manual_seed(seed), | |
) | |
latents = start_latents.clone() | |
if guidance_scale is not None: | |
w = torch.ones(batch_size) * guidance_scale | |
w_embedding = guidance_scale_embedding(w, embedding_dim=512) | |
w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype) | |
else: | |
w_embedding = None | |
for i, (t, s) in enumerate(zip(timesteps, boundary_timesteps)): | |
# predict the noise residual | |
noise_pred = pipe.unet( | |
latents.to(prompt_embeds.dtype), | |
t, | |
encoder_hidden_states=prompt_embeds, | |
return_dict=False, | |
timestep_cond=w_embedding, | |
added_cond_kwargs=encoded_text, | |
)[0] | |
latents = predicted_origin( | |
noise_pred, | |
torch.tensor([t] * len(latents), device=device), | |
torch.tensor([s] * len(latents), device=device), | |
latents, | |
pipe.scheduler.config.prediction_type, | |
alpha_schedule, | |
sigma_schedule, | |
).to(prompt_embeds.dtype) | |
if return_start_latent: | |
return latents, start_latents | |
else: | |
return latents | |
def linear_schedule_old(t, guidance_scale, tau1, tau2): | |
t = t / 1000 | |
if t <= tau1: | |
gamma = 1.0 | |
elif t >= tau2: | |
gamma = 0.0 | |
else: | |
gamma = (tau2 - t) / (tau2 - tau1) | |
return gamma * guidance_scale | |
def sample_deterministic( | |
pipe, | |
prompt, | |
latents=None, | |
generator=None, | |
num_scales=50, | |
num_inference_steps=1, | |
timesteps=None, | |
start_timestep=19, | |
max_inverse_timestep_index=49, | |
return_latent=False, | |
guidance_scale=None, # Used only if the student has w_embedding | |
compute_embeddings_fn=None, | |
is_sdxl=False, | |
endpoints=None, | |
use_dynamic_guidance=False, | |
tau1=0.7, | |
tau2=0.7, | |
amplify_prompt=None, | |
): | |
# assert isinstance(pipe, StableDiffusionPipeline), f"Does not support the pipeline {type(pipe)}" | |
height = pipe.unet.config.sample_size * pipe.vae_scale_factor | |
width = pipe.unet.config.sample_size * pipe.vae_scale_factor | |
# 1. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
device = pipe._execution_device | |
# Prepare text embeddings | |
if compute_embeddings_fn is not None: | |
if is_sdxl: | |
orig_size = [(1024, 1024)] * len(prompt) | |
crop_coords = [(0, 0)] * len(prompt) | |
encoded_text = compute_embeddings_fn(prompt, orig_size, crop_coords) | |
prompt_embeds = encoded_text.pop("prompt_embeds") | |
if amplify_prompt is not None: | |
orig_size = [(1024, 1024)] * len(amplify_prompt) | |
crop_coords = [(0, 0)] * len(amplify_prompt) | |
encoded_text_old = compute_embeddings_fn(amplify_prompt, orig_size, crop_coords) | |
amplify_prompt_embeds = encoded_text_old.pop("prompt_embeds") | |
else: | |
prompt_embeds = compute_embeddings_fn(prompt)["prompt_embeds"] | |
encoded_text = {} | |
prompt_embeds = prompt_embeds.to(pipe.unet.dtype) | |
else: | |
prompt_embeds = pipe.encode_prompt(prompt, device, 1, False)[0] | |
encoded_text = {} | |
assert prompt_embeds.dtype == pipe.unet.dtype | |
# Prepare the DDIM solver | |
inverse_endpoints = ','.join(endpoints.split(',')[1:] + ['999']) if endpoints is not None else None | |
solver = DDIMSolver( | |
pipe.scheduler.alphas_cumprod.numpy(), | |
timesteps=pipe.scheduler.num_train_timesteps, | |
ddim_timesteps=num_scales, | |
num_endpoints=num_inference_steps, | |
num_inverse_endpoints=num_inference_steps, | |
max_inverse_timestep_index=max_inverse_timestep_index, | |
endpoints=endpoints, | |
inverse_endpoints=inverse_endpoints | |
).to(device) | |
prompt_embeds_init = copy.deepcopy(prompt_embeds) | |
if timesteps is None: | |
timesteps = solver.inverse_endpoints.flip(0) | |
boundary_timesteps = solver.endpoints.flip(0) | |
else: | |
timesteps, boundary_timesteps = copy.deepcopy(timesteps), copy.deepcopy(timesteps) | |
timesteps.reverse() | |
boundary_timesteps.reverse() | |
boundary_timesteps = boundary_timesteps[1:] + [boundary_timesteps[0]] | |
boundary_timesteps[-1] = 0 | |
timesteps, boundary_timesteps = torch.tensor(timesteps), torch.tensor(boundary_timesteps) | |
alpha_schedule = torch.sqrt(pipe.scheduler.alphas_cumprod).to(device) | |
sigma_schedule = torch.sqrt(1 - pipe.scheduler.alphas_cumprod).to(device) | |
# 5. Prepare latent variables | |
if latents is None: | |
num_channels_latents = pipe.unet.config.in_channels | |
latents = pipe.prepare_latents( | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
None, | |
) | |
assert latents.dtype == pipe.unet.dtype | |
else: | |
latents = latents.to(prompt_embeds.dtype) | |
if guidance_scale is not None: | |
w = torch.ones(batch_size) * guidance_scale | |
w_embedding = guidance_scale_embedding(w, embedding_dim=512) | |
w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype) | |
else: | |
w_embedding = None | |
for i, (t, s) in enumerate(zip(timesteps, boundary_timesteps)): | |
if use_dynamic_guidance: | |
if not isinstance(t, int): | |
t_item = t.item() | |
if t_item > tau1 * 1000 and amplify_prompt is not None: | |
prompt_embeds = amplify_prompt_embeds | |
else: | |
prompt_embeds = prompt_embeds_init | |
guidance_scale = linear_schedule_old(t_item, w, tau1=tau1, tau2=tau2) | |
guidance_scale_tensor = torch.tensor([guidance_scale] * len(latents)) | |
w_embedding = guidance_scale_embedding(guidance_scale_tensor, embedding_dim=512) | |
w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype) | |
# predict the noise residual | |
noise_pred = pipe.unet( | |
latents, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=None, | |
return_dict=False, | |
timestep_cond=w_embedding, | |
added_cond_kwargs=encoded_text, | |
)[0] | |
latents = predicted_origin( | |
noise_pred, | |
torch.tensor([t] * len(noise_pred)).to(device), | |
torch.tensor([s] * len(noise_pred)).to(device), | |
latents, | |
pipe.scheduler.config.prediction_type, | |
alpha_schedule, | |
sigma_schedule, | |
).to(pipe.unet.dtype) | |
pipe.vae.to(torch.float32) | |
image = pipe.vae.decode(latents.to(torch.float32) / pipe.vae.config.scaling_factor, return_dict=False)[0] | |
do_denormalize = [True] * image.shape[0] | |
image = pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=do_denormalize) | |
if return_latent: | |
return image, latents | |
else: | |
return image | |
# ------------------------------------------------------------------------ | |