Spaces:
Sleeping
Sleeping
File size: 3,897 Bytes
568b799 d539f74 568b799 d539f74 568b799 d539f74 e109e3e 568b799 d539f74 568b799 e109e3e 568b799 d539f74 568b799 d539f74 568b799 d539f74 568b799 d539f74 568b799 d539f74 568b799 d539f74 568b799 d539f74 568b799 d539f74 568b799 d539f74 568b799 d539f74 568b799 d539f74 568b799 e109e3e 568b799 e109e3e 568b799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import cv2
import mediapipe as mp
import numpy as np
import gradio as gr
# Initialize MediaPipe Pose
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(
static_image_mode=False,
model_complexity=1,
enable_segmentation=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
)
# Initialize MediaPipe Face Mesh
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(
static_image_mode=False,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
)
def process_frame(image):
"""
Processes a frame by:
1. Converting RGB to BGR for OpenCV.
2. Flipping the frame horizontally for a mirror view.
3. Creating a black background.
4. Drawing body landmarks and computing shoulder center.
5. Drawing facial mesh and extracting chin point.
6. Drawing a neck line from shoulder center to chin.
7. Converting the result back to RGB.
"""
frame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
frame = cv2.flip(frame, 1) # Flip horizontally for mirror effect
output = np.zeros_like(frame)
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# --- Body Posture Analysis ---
pose_results = pose.process(rgb_frame)
shoulder_center = None
if pose_results.pose_landmarks:
h, w, _ = frame.shape
landmarks = [(int(lm.x * w), int(lm.y * h)) for lm in pose_results.pose_landmarks.landmark]
for connection in mp_pose.POSE_CONNECTIONS:
start_idx, end_idx = connection
if start_idx >= 11 and end_idx >= 11:
if start_idx < len(landmarks) and end_idx < len(landmarks):
cv2.line(output, landmarks[start_idx], landmarks[end_idx], (255, 255, 0), 2)
for i, pt in enumerate(landmarks):
if i >= 11:
cv2.circle(output, pt, 3, (255, 255, 0), -1)
if len(landmarks) > 12:
left_shoulder, right_shoulder = landmarks[11], landmarks[12]
shoulder_center = ((left_shoulder[0] + right_shoulder[0]) // 2,
(left_shoulder[1] + right_shoulder[1]) // 2)
cv2.circle(output, shoulder_center, 4, (0, 255, 255), -1)
# --- Facial Mesh Analysis ---
chin_point = None
fm_results = face_mesh.process(rgb_frame)
if fm_results.multi_face_landmarks:
for face_landmarks in fm_results.multi_face_landmarks:
h, w, _ = frame.shape
fm_points = [(int(lm.x * w), int(lm.y * h)) for lm in face_landmarks.landmark]
for connection in mp_face_mesh.FACEMESH_TESSELATION:
start_idx, end_idx = connection
if start_idx < len(fm_points) and end_idx < len(fm_points):
cv2.line(output, fm_points[start_idx], fm_points[end_idx], (0, 0, 255), 1)
for pt in fm_points:
cv2.circle(output, pt, 2, (0, 255, 0), -1)
if len(face_landmarks.landmark) > 152:
lm = face_landmarks.landmark[152]
chin_point = (int(lm.x * w), int(lm.y * h))
cv2.circle(output, chin_point, 4, (0, 0, 255), -1)
break # Process only the first detected face.
# --- Draw Neck Line ---
if shoulder_center and chin_point:
cv2.line(output, shoulder_center, chin_point, (0, 255, 255), 2)
return cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
# --- Gradio Interface for Live Webcam Inference ---
iface = gr.Interface(
fn=process_frame,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Webcam Input"),
outputs=gr.Image(type="numpy", label="Processed Output"),
live=True,
title="Live Body Posture & Neck Analysis (Mirror View)",
description="Real-time webcam analysis using MediaPipe Pose and Face Mesh with live inference and mirrored camera view."
)
iface.launch()
|