David Driscoll
Update app
565e309
raw
history blame
7.83 kB
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
# MediaPipe Pose for posture analysis
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
# MediaPipe Face Detection for face detection
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
# Object Detection Model: Faster R-CNN (pretrained on COCO)
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval()
obj_transform = transforms.Compose([transforms.ToTensor()])
# Facial Emotion Detection using FER (requires TensorFlow)
emotion_detector = FER(mtcnn=True)
# -----------------------------
# Define Analysis Functions
# -----------------------------
def analyze_posture(image):
"""
Processes an image captured from the webcam with MediaPipe Pose,
draws pose landmarks, and returns an annotated image and a text summary.
"""
# Convert from PIL (RGB) to OpenCV BGR format
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
posture_result = "No posture detected"
pose_results = pose.process(frame_rgb)
if pose_results.pose_landmarks:
posture_result = "Posture detected"
mp_drawing.draw_landmarks(
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
)
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Posture Analysis: {posture_result}"
def analyze_emotion(image):
"""
Uses FER to detect facial emotions from the captured image.
Returns the image and a text summary.
"""
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
emotion_text = f"{top_emotion} ({score:.2f})"
else:
emotion_text = "No face detected for emotion analysis"
annotated_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Emotion Analysis: {emotion_text}"
def analyze_objects(image):
"""
Uses a pretrained Faster R-CNN to detect objects in the image.
Returns an annotated image with bounding boxes and a text summary.
"""
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(frame_rgb)
img_tensor = obj_transform(image_pil)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
detected_boxes = detections["boxes"][detections["scores"] > threshold]
for box in detected_boxes:
box = box.int().cpu().numpy()
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
object_result = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Object Detection: {object_result}"
def analyze_faces(image):
"""
Uses MediaPipe face detection to identify faces in the image.
Returns an annotated image with bounding boxes and a text summary.
"""
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb)
face_result = "No faces detected"
if face_results.detections:
face_result = f"Detected {len(face_results.detections)} face(s)"
h, w, _ = output_frame.shape
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Face Detection: {face_result}"
# -----------------------------
# Custom CSS for a High-Tech Look
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #0e0e0e;
color: #e0e0e0;
font-family: 'Orbitron', sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
background: linear-gradient(135deg, #1e1e2f, #3e3e55);
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title {
font-size: 2.5em;
color: #66fcf1;
text-align: center;
margin-bottom: 0.2em;
}
.gradio-description {
font-size: 1.2em;
text-align: center;
margin-bottom: 1em;
}
"""
# -----------------------------
# Create Individual Interfaces for Each Analysis
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Posture"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
title="Posture Analysis",
description="Detects your posture using MediaPipe."
)
emotion_interface = gr.Interface(
fn=analyze_emotion,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
title="Emotion Analysis",
description="Detects facial emotions using FER."
)
objects_interface = gr.Interface(
fn=analyze_objects,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture the Scene"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
title="Object Detection",
description="Detects objects using a pretrained Faster R-CNN."
)
faces_interface = gr.Interface(
fn=analyze_faces,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
title="Face Detection",
description="Detects faces using MediaPipe."
)
# -----------------------------
# Create a Tabbed Interface for All Analyses
# -----------------------------
tabbed_interface = gr.TabbedInterface(
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface],
tab_names=["Posture", "Emotion", "Objects", "Faces"]
)
# -----------------------------
# Wrap Everything in a Blocks Layout with Custom CSS
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>")
gr.Markdown("<p class='gradio-description'>Experience a high-tech cinematic interface for real-time analysis of your posture, emotions, objects, and faces using your webcam.</p>")
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()