File size: 7,828 Bytes
e5a1544 d4ac8c5 e5a1544 d4ac8c5 e5a1544 5148899 e5a1544 5148899 2e20db1 5148899 e5a1544 5148899 e5a1544 5148899 e5a1544 5148899 8e73638 5148899 e5a1544 5148899 e5a1544 5148899 e5a1544 5148899 e5a1544 d4ac8c5 e5a1544 5148899 e5a1544 5148899 8e73638 5148899 e5a1544 5148899 e5a1544 5148899 e5a1544 5148899 e5a1544 5148899 e5a1544 5148899 565e309 5148899 565e309 5148899 565e309 5148899 565e309 5148899 e5a1544 5148899 e5a1544 5148899 2e20db1 5148899 e5a1544 5148899 2e20db1 5148899 2e20db1 5148899 2e20db1 5148899 a46f53e 565e309 5148899 e5a1544 5148899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
# MediaPipe Pose for posture analysis
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
# MediaPipe Face Detection for face detection
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
# Object Detection Model: Faster R-CNN (pretrained on COCO)
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval()
obj_transform = transforms.Compose([transforms.ToTensor()])
# Facial Emotion Detection using FER (requires TensorFlow)
emotion_detector = FER(mtcnn=True)
# -----------------------------
# Define Analysis Functions
# -----------------------------
def analyze_posture(image):
"""
Processes an image captured from the webcam with MediaPipe Pose,
draws pose landmarks, and returns an annotated image and a text summary.
"""
# Convert from PIL (RGB) to OpenCV BGR format
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
posture_result = "No posture detected"
pose_results = pose.process(frame_rgb)
if pose_results.pose_landmarks:
posture_result = "Posture detected"
mp_drawing.draw_landmarks(
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
)
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Posture Analysis: {posture_result}"
def analyze_emotion(image):
"""
Uses FER to detect facial emotions from the captured image.
Returns the image and a text summary.
"""
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
emotion_text = f"{top_emotion} ({score:.2f})"
else:
emotion_text = "No face detected for emotion analysis"
annotated_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Emotion Analysis: {emotion_text}"
def analyze_objects(image):
"""
Uses a pretrained Faster R-CNN to detect objects in the image.
Returns an annotated image with bounding boxes and a text summary.
"""
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(frame_rgb)
img_tensor = obj_transform(image_pil)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
detected_boxes = detections["boxes"][detections["scores"] > threshold]
for box in detected_boxes:
box = box.int().cpu().numpy()
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
object_result = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Object Detection: {object_result}"
def analyze_faces(image):
"""
Uses MediaPipe face detection to identify faces in the image.
Returns an annotated image with bounding boxes and a text summary.
"""
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb)
face_result = "No faces detected"
if face_results.detections:
face_result = f"Detected {len(face_results.detections)} face(s)"
h, w, _ = output_frame.shape
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Face Detection: {face_result}"
# -----------------------------
# Custom CSS for a High-Tech Look
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #0e0e0e;
color: #e0e0e0;
font-family: 'Orbitron', sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
background: linear-gradient(135deg, #1e1e2f, #3e3e55);
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title {
font-size: 2.5em;
color: #66fcf1;
text-align: center;
margin-bottom: 0.2em;
}
.gradio-description {
font-size: 1.2em;
text-align: center;
margin-bottom: 1em;
}
"""
# -----------------------------
# Create Individual Interfaces for Each Analysis
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Posture"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
title="Posture Analysis",
description="Detects your posture using MediaPipe."
)
emotion_interface = gr.Interface(
fn=analyze_emotion,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
title="Emotion Analysis",
description="Detects facial emotions using FER."
)
objects_interface = gr.Interface(
fn=analyze_objects,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture the Scene"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
title="Object Detection",
description="Detects objects using a pretrained Faster R-CNN."
)
faces_interface = gr.Interface(
fn=analyze_faces,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
title="Face Detection",
description="Detects faces using MediaPipe."
)
# -----------------------------
# Create a Tabbed Interface for All Analyses
# -----------------------------
tabbed_interface = gr.TabbedInterface(
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface],
tab_names=["Posture", "Emotion", "Objects", "Faces"]
)
# -----------------------------
# Wrap Everything in a Blocks Layout with Custom CSS
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>")
gr.Markdown("<p class='gradio-description'>Experience a high-tech cinematic interface for real-time analysis of your posture, emotions, objects, and faces using your webcam.</p>")
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()
|