Spaces:
Runtime error
Runtime error
File size: 4,363 Bytes
79a2238 dbc6d1e 79a2238 93528c6 79a2238 0a01a25 79a2238 3005acd 79a2238 6a3746d 79a2238 6a3746d 2a0abe4 79a2238 09c1a2c b907f86 09c1a2c 31d4007 09c1a2c d2377c0 09c1a2c 9cbe885 79a2238 53a99e5 9cbe885 79a2238 9cbe885 09c1a2c 79a2238 1ef90ad 6a3746d b907f86 1ef90ad 4b278b1 6a3746d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import cv2
import numpy as np
import gradio as gr
# import os
# os.chdir('modeling')
import tensorflow as tf, tf_keras
import tensorflow_hub as hub
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
from official.projects.movinet.modeling import movinet
from official.projects.movinet.modeling import movinet_model_a2_modified as movinet_model_modified
movinet_path = 'movinet_checkpoints_a2_epoch9'
movinet_model = tf_keras.models.load_model(movinet_path)
movinet_model.trainable = False
tokenizer = AutoTokenizer.from_pretrained("t5-base")
t5_model = TFAutoModelForSeq2SeqLM.from_pretrained("deanna-emery/ASL_t5_movinet_sentence")
t5_model.trainable = False
def crop_center_square(frame):
y, x = frame.shape[0:2]
if x > y:
start_x = (x-y)/2
end_x = start_x + y
start_x = int(start_x)
end_x = int(end_x)
return frame[:, int(start_x):int(end_x)]
else:
return frame
def preprocess(filename, max_frames=0, resize=(224,224)):
video_capture = cv2.VideoCapture(filename)
frames = []
try:
while video_capture.isOpened():
ret, frame = video_capture.read()
if not ret:
break
frame = crop_center_square(frame)
frame = cv2.resize(frame, resize)
frame = frame[:, :, [2, 1, 0]]
frames.append(frame)
if len(frames) == max_frames:
break
finally:
video_capture.release()
video = np.array(frames) / 255.0
video = np.expand_dims(video, axis=0)
return video
def translate(video_file, true_caption=None):
video = preprocess(video_file, max_frames=0, resize=(224,224))
embeddings = movinet_model(video)['vid_embedding']
tokens = t5_model.generate(inputs_embeds = embeddings,
max_new_tokens=128,
temperature=0.1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=80,
top_p=0.90,
)
translation = tokenizer.batch_decode(tokens, skip_special_tokens=True)
return {"translation":translation}
# Gradio App config
title = "American Sign Language Translation: An Approach Combining MoViNets and T5"
description = """
This application surfaces a model for translation of American Sign Language (ASL).
The model comprises of a fine-tuned MoViNet CNN model to generate video embeddings and a T5 encoder-decoder model
to generate translations from the video embeddings. This model architecture achieves a BLEU score of 1.98
and an average cosine similarity score of 0.21 when trained and evaluated on the YouTube-ASL dataset.
More information about the model training and instructions to download the models can be found in our GitHub repository <a href=https://github.com/deanna-emery/ASL-Translator>here</a>.
A limitation of this architecture is the size of the MoViNets model, making it especially slow during inference on a CPU.
We do not recommend uploading videos longer than 4 seconds as the video embedding generation may take some time.
The application does not accept videos that are longer than 10 seconds.
We have provided some pre-cached videos with their original captions and translations as examples.
"""
examples = [
["videos/My_second_ASL_professors_name_was_Will_White.mp4", "My second ASL professor's name was Will White"],
['videos/You_are_my_sunshine.mp4', 'You are my sunshine'],
['videos/scrub_your_hands_for_at_least_20_seconds.mp4', 'scrub your hands for at least 20 seconds'],
['videos/no.mp4', 'no'],
]
article = """The captions for the example videos are as follows in order: \n
1. 'My second ASL professor's name was Will White'
2. 'You are my sunshine'
3. 'scrub your hands for at least 20 seconds'
4. 'no'
"""
# Gradio App interface
gr.Interface(fn=translate,
inputs=[gr.Video(label='Video', show_label=True, max_length=10, sources='upload'),
gr.Textbox(label='Caption', show_label=True, interactive=False, visible=False)],
outputs="text",
allow_flagging="never",
title=title,
description=description,
examples=examples,
).launch() |