ASL-MoViNet-T5-translator / official /core /savedmodel_checkpoint_manager.py
deanna-emery's picture
updates
93528c6
raw
history blame
9.86 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Custom checkpoint manager that also exports saved models."""
import os
import re
import time
from typing import Callable, List, Mapping, Optional, Union
from absl import logging
import tensorflow as tf, tf_keras
SAVED_MODULES_PATH_SUFFIX = 'saved_modules'
def make_saved_modules_directory_name(checkpoint_name: str) -> str:
return f'{checkpoint_name}_{SAVED_MODULES_PATH_SUFFIX}'
class SavedModelCheckpointManager(tf.train.CheckpointManager):
"""A CheckpointManager that also exports `SavedModel`s."""
def __init__(self,
checkpoint: tf.train.Checkpoint,
directory: str,
max_to_keep: int,
modules_to_export: Optional[Mapping[str, tf.Module]] = None,
keep_checkpoint_every_n_hours: Optional[int] = None,
checkpoint_name: str = 'ckpt',
step_counter: Optional[tf.Variable] = None,
checkpoint_interval: Optional[int] = None,
init_fn: Optional[Callable[[], None]] = None):
"""See base class."""
super().__init__(
checkpoint=checkpoint,
directory=directory,
max_to_keep=max_to_keep,
keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
checkpoint_name=checkpoint_name,
step_counter=step_counter,
checkpoint_interval=checkpoint_interval,
init_fn=init_fn)
self._modules_to_export = modules_to_export
self._savedmodels = self.get_existing_savedmodels()
def save(self,
checkpoint_number: Optional[int] = None,
check_interval: bool = True,
options: Optional[tf.train.CheckpointOptions] = None):
"""See base class."""
checkpoint_path = super().save(
checkpoint_number=checkpoint_number,
check_interval=check_interval,
options=options)
if not checkpoint_path: # Nothing got written.
return
if not self._modules_to_export: # No modules to export.
logging.info('Skip saving SavedModel due to empty modules_to_export.')
return checkpoint_path
# Save the models for the checkpoint that just got written.
saved_modules_directory = make_saved_modules_directory_name(checkpoint_path)
# Atomic export of SavedModel. Write into a temporary direcotory and then
# rename as the final direcotory after finishing the writing.
# This can avoid trying to read an unfinished savedmodel.
saved_modules_directory_tmp = saved_modules_directory + '_temp'
for model_name, model in self._modules_to_export.items():
signatures = getattr(model, 'saved_model_signatures', None)
if signatures is not None:
tf.saved_model.save(
obj=model,
export_dir=os.path.join(saved_modules_directory_tmp, model_name),
signatures=signatures)
if tf.io.gfile.exists(saved_modules_directory_tmp):
tf.io.gfile.rename(saved_modules_directory_tmp, saved_modules_directory)
saved_modules_directories_to_keep = [
make_saved_modules_directory_name(ckpt) for ckpt in self.checkpoints
]
existing_saved_modules_dirs = self.get_existing_savedmodels()
self._savedmodels = []
# Keep savedmodels in the same order as checkpoints (from oldest to newest).
for saved_modules_dir_to_keep in saved_modules_directories_to_keep:
if saved_modules_dir_to_keep in existing_saved_modules_dirs:
self._savedmodels.append(saved_modules_dir_to_keep)
for existing_saved_modules_dir in existing_saved_modules_dirs:
if existing_saved_modules_dir not in self._savedmodels:
tf.io.gfile.rmtree(existing_saved_modules_dir)
return checkpoint_path
def get_existing_savedmodels(self) -> List[str]:
"""Gets a list of all existing SavedModel paths in `directory`.
Returns:
A list of all existing SavedModel paths.
"""
saved_modules_glob = make_saved_modules_directory_name(
self._checkpoint_prefix + '-*')
savedmodels = tf.io.gfile.glob(saved_modules_glob)
# Filter out temporary savedmodel.
savedmodels = [
savedmodel
for savedmodel in savedmodels
if savedmodel.endswith(SAVED_MODULES_PATH_SUFFIX)
]
return savedmodels
@property
def latest_savedmodel(self) -> Union[str, None]:
"""The path of the most recent SavedModel in `directory`.
Returns:
The latest SavedModel path. If there are no SavedModels, returns `None`.
"""
if self._savedmodels:
return self._savedmodels[-1]
return None
@property
def savedmodels(self) -> List[str]:
"""A list of managed SavedModels.
Returns:
A list of SavedModel paths, sorted from oldest to newest.
"""
return self._savedmodels
@property
def modules_to_export(self) -> Union[Mapping[str, tf.Module], None]:
return self._modules_to_export
def get_savedmodel_number_from_path(self,
savedmodel_path: str) -> Union[int, None]:
"""Gets the savedmodel_number/checkpoint_number from savedmodel filepath.
The savedmodel_number is global step when using with orbit controller.
Args:
savedmodel_path: savedmodel directory path.
Returns:
Savedmodel number or None if no matched pattern found in savedmodel path.
"""
pattern = rf'\d+_{SAVED_MODULES_PATH_SUFFIX}$'
savedmodel_number = re.search(pattern, savedmodel_path)
if savedmodel_number:
savedmodel_number = savedmodel_number.group()
return int(savedmodel_number[:-len(SAVED_MODULES_PATH_SUFFIX) - 1])
return None
def savedmodels_iterator(self,
min_interval_secs: float = 0,
timeout: Optional[float] = None,
timeout_fn: Optional[Callable[[], bool]] = None):
"""Continuously yield new SavedModel files as they appear.
The iterator only checks for new savedmodels when control flow has been
reverted to it. The logic is same to the `train.checkpoints_iterator`.
Args:
min_interval_secs: The minimum number of seconds between yielding
savedmodels.
timeout: The maximum number of seconds to wait between savedmodels. If
left as `None`, then the process will wait indefinitely.
timeout_fn: Optional function to call after a timeout. If the function
returns True, then it means that no new savedmodels will be generated
and the iterator will exit. The function is called with no arguments.
Yields:
String paths to latest SavedModel files as they arrive.
"""
savedmodel_path = None
while True:
new_savedmodel_path = self.wait_for_new_savedmodel(
savedmodel_path, timeout=timeout)
if new_savedmodel_path is None:
if not timeout_fn:
# timed out
logging.info('Timed-out waiting for a savedmodel.')
return
if timeout_fn():
# The timeout_fn indicated that we are truly done.
return
else:
# The timeout_fn indicated that more savedmodels may come.
continue
start = time.time()
savedmodel_path = new_savedmodel_path
yield savedmodel_path
time_to_next_eval = start + min_interval_secs - time.time()
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)
def wait_for_new_savedmodel(
self,
last_savedmodel: Optional[str] = None,
seconds_to_sleep: float = 1.0,
timeout: Optional[float] = None) -> Union[str, None]:
"""Waits until a new savedmodel file is found.
Args:
last_savedmodel: The last savedmodel path used or `None` if we're
expecting a savedmodel for the first time.
seconds_to_sleep: The number of seconds to sleep for before looking for a
new savedmodel.
timeout: The maximum number of seconds to wait. If left as `None`, then
the process will wait indefinitely.
Returns:
A new savedmodel path, or None if the timeout was reached.
"""
logging.info('Waiting for new savedmodel at %s', self._directory)
stop_time = time.time() + timeout if timeout is not None else None
last_savedmodel_number = -1
if last_savedmodel:
last_savedmodel_number = self.get_savedmodel_number_from_path(
last_savedmodel)
while True:
if stop_time is not None and time.time() + seconds_to_sleep > stop_time:
return None
existing_savedmodels = {}
for savedmodel_path in self.get_existing_savedmodels():
savedmodel_number = self.get_savedmodel_number_from_path(
savedmodel_path)
if savedmodel_number is not None:
existing_savedmodels[savedmodel_number] = savedmodel_path
# Find the first savedmodel with larger step number as next savedmodel.
savedmodel_path = None
existing_savedmodels = dict(sorted(existing_savedmodels.items()))
for savedmodel_number in existing_savedmodels:
if savedmodel_number > last_savedmodel_number:
savedmodel_path = existing_savedmodels[savedmodel_number]
break
if savedmodel_path:
logging.info('Found new savedmodel at %s', savedmodel_path)
return savedmodel_path
else:
time.sleep(seconds_to_sleep)