Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for BERT pretrainer model.""" | |
import itertools | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling import layers | |
from official.nlp.modeling import networks | |
from official.nlp.modeling.models import bert_pretrainer | |
class BertPretrainerTest(tf.test.TestCase, parameterized.TestCase): | |
def test_bert_pretrainer(self): | |
"""Validate that the Keras object can be created.""" | |
# Build a transformer network to use within the BERT trainer. | |
vocab_size = 100 | |
sequence_length = 512 | |
test_network = networks.BertEncoder( | |
vocab_size=vocab_size, | |
num_layers=2, | |
max_sequence_length=sequence_length) | |
# Create a BERT trainer with the created network. | |
num_classes = 3 | |
num_token_predictions = 2 | |
bert_trainer_model = bert_pretrainer.BertPretrainer( | |
test_network, | |
num_classes=num_classes, | |
num_token_predictions=num_token_predictions) | |
# Create a set of 2-dimensional inputs (the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
masked_lm_positions = tf_keras.Input( | |
shape=(num_token_predictions,), dtype=tf.int32) | |
# Invoke the trainer model on the inputs. This causes the layer to be built. | |
outputs = bert_trainer_model( | |
[word_ids, mask, type_ids, masked_lm_positions]) | |
# Validate that the outputs are of the expected shape. | |
expected_lm_shape = [None, num_token_predictions, vocab_size] | |
expected_classification_shape = [None, num_classes] | |
self.assertAllEqual(expected_lm_shape, outputs['masked_lm'].shape.as_list()) | |
self.assertAllEqual(expected_classification_shape, | |
outputs['classification'].shape.as_list()) | |
def test_bert_trainer_tensor_call(self): | |
"""Validate that the Keras object can be invoked.""" | |
# Build a transformer network to use within the BERT trainer. | |
test_network = networks.BertEncoder(vocab_size=100, num_layers=2) | |
# Create a BERT trainer with the created network. | |
bert_trainer_model = bert_pretrainer.BertPretrainer( | |
test_network, num_classes=2, num_token_predictions=2) | |
# Create a set of 2-dimensional data tensors to feed into the model. | |
word_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32) | |
mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32) | |
type_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32) | |
lm_mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32) | |
# Invoke the trainer model on the tensors. In Eager mode, this does the | |
# actual calculation. (We can't validate the outputs, since the network is | |
# too complex: this simply ensures we're not hitting runtime errors.) | |
_ = bert_trainer_model([word_ids, mask, type_ids, lm_mask]) | |
def test_serialize_deserialize(self): | |
"""Validate that the BERT trainer can be serialized and deserialized.""" | |
# Build a transformer network to use within the BERT trainer. (Here, we use | |
# a short sequence_length for convenience.) | |
test_network = networks.BertEncoder( | |
vocab_size=100, num_layers=2, max_sequence_length=5) | |
# Create a BERT trainer with the created network. (Note that all the args | |
# are different, so we can catch any serialization mismatches.) | |
bert_trainer_model = bert_pretrainer.BertPretrainer( | |
test_network, num_classes=4, num_token_predictions=3) | |
# Create another BERT trainer via serialization and deserialization. | |
config = bert_trainer_model.get_config() | |
new_bert_trainer_model = bert_pretrainer.BertPretrainer.from_config(config) | |
# Validate that the config can be forced to JSON. | |
_ = new_bert_trainer_model.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(bert_trainer_model.get_config(), | |
new_bert_trainer_model.get_config()) | |
class BertPretrainerV2Test(tf.test.TestCase, parameterized.TestCase): | |
def test_bert_pretrainerv2(self, dict_outputs, return_all_encoder_outputs, | |
use_customized_masked_lm, has_masked_lm_positions): | |
"""Validate that the Keras object can be created.""" | |
# Build a transformer network to use within the BERT trainer. | |
del dict_outputs, return_all_encoder_outputs | |
vocab_size = 100 | |
sequence_length = 512 | |
hidden_size = 48 | |
num_layers = 2 | |
test_network = networks.BertEncoderV2( | |
vocab_size=vocab_size, | |
num_layers=num_layers, | |
hidden_size=hidden_size, | |
max_sequence_length=sequence_length) | |
_ = test_network(test_network.inputs) | |
# Create a BERT trainer with the created network. | |
if use_customized_masked_lm: | |
customized_masked_lm = layers.MaskedLM( | |
embedding_table=test_network.get_embedding_table()) | |
else: | |
customized_masked_lm = None | |
bert_trainer_model = bert_pretrainer.BertPretrainerV2( | |
encoder_network=test_network, customized_masked_lm=customized_masked_lm) | |
num_token_predictions = 20 | |
# Create a set of 2-dimensional inputs (the first dimension is implicit). | |
inputs = dict( | |
input_word_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32), | |
input_mask=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32), | |
input_type_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32)) | |
if has_masked_lm_positions: | |
inputs['masked_lm_positions'] = tf_keras.Input( | |
shape=(num_token_predictions,), dtype=tf.int32) | |
# Invoke the trainer model on the inputs. This causes the layer to be built. | |
outputs = bert_trainer_model(inputs) | |
has_encoder_outputs = True # dict_outputs or return_all_encoder_outputs | |
expected_keys = ['sequence_output', 'pooled_output'] | |
if has_encoder_outputs: | |
expected_keys.append('encoder_outputs') | |
if has_masked_lm_positions: | |
expected_keys.append('mlm_logits') | |
self.assertSameElements(outputs.keys(), expected_keys) | |
# Validate that the outputs are of the expected shape. | |
expected_lm_shape = [None, num_token_predictions, vocab_size] | |
if has_masked_lm_positions: | |
self.assertAllEqual(expected_lm_shape, | |
outputs['mlm_logits'].shape.as_list()) | |
expected_sequence_output_shape = [None, sequence_length, hidden_size] | |
self.assertAllEqual(expected_sequence_output_shape, | |
outputs['sequence_output'].shape.as_list()) | |
expected_pooled_output_shape = [None, hidden_size] | |
self.assertAllEqual(expected_pooled_output_shape, | |
outputs['pooled_output'].shape.as_list()) | |
def test_multiple_cls_outputs(self): | |
"""Validate that the Keras object can be created.""" | |
# Build a transformer network to use within the BERT trainer. | |
vocab_size = 100 | |
sequence_length = 512 | |
hidden_size = 48 | |
num_layers = 2 | |
test_network = networks.BertEncoderV2( | |
vocab_size=vocab_size, | |
num_layers=num_layers, | |
hidden_size=hidden_size, | |
max_sequence_length=sequence_length) | |
bert_trainer_model = bert_pretrainer.BertPretrainerV2( | |
encoder_network=test_network, | |
classification_heads=[layers.MultiClsHeads( | |
inner_dim=5, cls_list=[('foo', 2), ('bar', 3)])]) | |
num_token_predictions = 20 | |
# Create a set of 2-dimensional inputs (the first dimension is implicit). | |
inputs = dict( | |
input_word_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32), | |
input_mask=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32), | |
input_type_ids=tf_keras.Input(shape=(sequence_length,), dtype=tf.int32), | |
masked_lm_positions=tf_keras.Input( | |
shape=(num_token_predictions,), dtype=tf.int32)) | |
# Invoke the trainer model on the inputs. This causes the layer to be built. | |
outputs = bert_trainer_model(inputs) | |
self.assertEqual(outputs['foo'].shape.as_list(), [None, 2]) | |
self.assertEqual(outputs['bar'].shape.as_list(), [None, 3]) | |
def test_v2_serialize_deserialize(self): | |
"""Validate that the BERT trainer can be serialized and deserialized.""" | |
# Build a transformer network to use within the BERT trainer. | |
test_network = networks.BertEncoderV2(vocab_size=100, num_layers=2) | |
# Create a BERT trainer with the created network. (Note that all the args | |
# are different, so we can catch any serialization mismatches.) | |
bert_trainer_model = bert_pretrainer.BertPretrainerV2( | |
encoder_network=test_network) | |
# Create another BERT trainer via serialization and deserialization. | |
config = bert_trainer_model.get_config() | |
new_bert_trainer_model = bert_pretrainer.BertPretrainerV2.from_config( | |
config) | |
# Validate that the config can be forced to JSON. | |
_ = new_bert_trainer_model.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(bert_trainer_model.get_config(), | |
new_bert_trainer_model.get_config()) | |
if __name__ == '__main__': | |
tf.test.main() | |