deanna-emery's picture
updates
93528c6
raw
history blame
25.7 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer-based BERT encoder network."""
# pylint: disable=g-classes-have-attributes
from typing import Any, Callable, Optional, Union
from absl import logging
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling import layers
_Initializer = Union[str, tf_keras.initializers.Initializer]
_Activation = Union[str, Callable[..., Any]]
_approx_gelu = lambda x: tf_keras.activations.gelu(x, approximate=True)
@tf_keras.utils.register_keras_serializable(package='Text')
class BertEncoderV2(tf_keras.layers.Layer):
"""Bi-directional Transformer-based encoder network.
This network implements a bi-directional Transformer-based encoder as
described in "BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding" (https://arxiv.org/abs/1810.04805). It includes the
embedding lookups and transformer layers, but not the masked language model
or classification task networks.
The default values for this object are taken from the BERT-Base implementation
in "BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding".
Args:
vocab_size: The size of the token vocabulary.
hidden_size: The size of the transformer hidden layers.
num_layers: The number of transformer layers.
num_attention_heads: The number of attention heads for each transformer. The
hidden size must be divisible by the number of attention heads.
max_sequence_length: The maximum sequence length that this encoder can
consume. This determines the variable shape for positional embeddings.
type_vocab_size: The number of types that the 'type_ids' input can take.
inner_dim: The output dimension of the first Dense layer in a two-layer
feedforward network for each transformer.
inner_activation: The activation for the first Dense layer in a two-layer
feedforward network for each transformer.
output_dropout: Dropout probability for the post-attention and output
dropout.
attention_dropout: The dropout rate to use for the attention layers within
the transformer layers.
initializer: The initialzer to use for all weights in this encoder.
output_range: The sequence output range, [0, output_range), by slicing the
target sequence of the last transformer layer. `None` means the entire
target sequence will attend to the source sequence, which yields the full
output.
embedding_width: The width of the word embeddings. If the embedding width is
not equal to hidden size, embedding parameters will be factorized into two
matrices in the shape of ['vocab_size', 'embedding_width'] and
['embedding_width', 'hidden_size'] ('embedding_width' is usually much
smaller than 'hidden_size').
embedding_layer: An optional Layer instance which will be called to generate
embeddings for the input word IDs.
norm_first: Whether to normalize inputs to attention and intermediate dense
layers. If set False, output of attention and intermediate dense layers is
normalized.
with_dense_inputs: Whether to accept dense embeddings as the input.
return_attention_scores: Whether to add an additional output containing the
attention scores of all transformer layers. This will be a list of length
`num_layers`, and each element will be in the shape [batch_size,
num_attention_heads, seq_dim, seq_dim].
"""
def __init__(
self,
vocab_size: int,
hidden_size: int = 768,
num_layers: int = 12,
num_attention_heads: int = 12,
max_sequence_length: int = 512,
type_vocab_size: int = 16,
inner_dim: int = 3072,
inner_activation: _Activation = _approx_gelu,
output_dropout: float = 0.1,
attention_dropout: float = 0.1,
initializer: _Initializer = tf_keras.initializers.TruncatedNormal(
stddev=0.02),
output_range: Optional[int] = None,
embedding_width: Optional[int] = None,
embedding_layer: Optional[tf_keras.layers.Layer] = None,
norm_first: bool = False,
with_dense_inputs: bool = False,
return_attention_scores: bool = False,
**kwargs):
# Pops kwargs that are used in V1 implementation.
if 'dict_outputs' in kwargs:
kwargs.pop('dict_outputs')
if 'return_all_encoder_outputs' in kwargs:
kwargs.pop('return_all_encoder_outputs')
if 'intermediate_size' in kwargs:
inner_dim = kwargs.pop('intermediate_size')
if 'activation' in kwargs:
inner_activation = kwargs.pop('activation')
if 'dropout_rate' in kwargs:
output_dropout = kwargs.pop('dropout_rate')
if 'attention_dropout_rate' in kwargs:
attention_dropout = kwargs.pop('attention_dropout_rate')
super().__init__(**kwargs)
self._output_range = output_range
activation = tf_keras.activations.get(inner_activation)
initializer = tf_keras.initializers.get(initializer)
if embedding_width is None:
embedding_width = hidden_size
if embedding_layer is None:
self._embedding_layer = layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=embedding_width,
initializer=tf_utils.clone_initializer(initializer),
name='word_embeddings')
else:
self._embedding_layer = embedding_layer
self._position_embedding_layer = layers.PositionEmbedding(
initializer=tf_utils.clone_initializer(initializer),
max_length=max_sequence_length,
name='position_embedding')
self._type_embedding_layer = layers.OnDeviceEmbedding(
vocab_size=type_vocab_size,
embedding_width=embedding_width,
initializer=tf_utils.clone_initializer(initializer),
use_one_hot=True,
name='type_embeddings')
self._embedding_norm_layer = tf_keras.layers.LayerNormalization(
name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)
self._embedding_dropout = tf_keras.layers.Dropout(
rate=output_dropout, name='embedding_dropout')
# We project the 'embedding' output to 'hidden_size' if it is not already
# 'hidden_size'.
self._embedding_projection = None
if embedding_width != hidden_size:
self._embedding_projection = tf_keras.layers.EinsumDense(
'...x,xy->...y',
output_shape=hidden_size,
bias_axes='y',
kernel_initializer=tf_utils.clone_initializer(initializer),
name='embedding_projection')
self._transformer_layers = []
self._attention_mask_layer = layers.SelfAttentionMask(
name='self_attention_mask')
self._num_layers = num_layers
for i in range(num_layers):
layer = layers.TransformerEncoderBlock(
num_attention_heads=num_attention_heads,
inner_dim=inner_dim,
inner_activation=inner_activation,
output_dropout=output_dropout,
attention_dropout=attention_dropout,
norm_first=norm_first,
return_attention_scores=return_attention_scores,
kernel_initializer=tf_utils.clone_initializer(initializer),
name='transformer/layer_%d' % i)
self._transformer_layers.append(layer)
self._pooler_layer = tf_keras.layers.Dense(
units=hidden_size,
activation='tanh',
kernel_initializer=tf_utils.clone_initializer(initializer),
name='pooler_transform')
self._config = {
'vocab_size': vocab_size,
'hidden_size': hidden_size,
'num_layers': num_layers,
'num_attention_heads': num_attention_heads,
'max_sequence_length': max_sequence_length,
'type_vocab_size': type_vocab_size,
'inner_dim': inner_dim,
'inner_activation': tf_utils.serialize_activation(
activation, use_legacy_format=True
),
'output_dropout': output_dropout,
'attention_dropout': attention_dropout,
'initializer': tf_utils.serialize_initializer(
initializer, use_legacy_format=True
),
'output_range': output_range,
'embedding_width': embedding_width,
'embedding_layer': embedding_layer,
'norm_first': norm_first,
'with_dense_inputs': with_dense_inputs,
'return_attention_scores': return_attention_scores,
}
if with_dense_inputs:
self.inputs = dict(
input_word_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
input_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
input_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
dense_inputs=tf_keras.Input(
shape=(None, embedding_width), dtype=tf.float32),
dense_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
dense_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
)
else:
self.inputs = dict(
input_word_ids=tf_keras.Input(shape=(None,), dtype=tf.int32),
input_mask=tf_keras.Input(shape=(None,), dtype=tf.int32),
input_type_ids=tf_keras.Input(shape=(None,), dtype=tf.int32))
def call(self, inputs):
word_embeddings = None
if isinstance(inputs, dict):
word_ids = inputs.get('input_word_ids')
mask = inputs.get('input_mask')
type_ids = inputs.get('input_type_ids')
word_embeddings = inputs.get('input_word_embeddings', None)
dense_inputs = inputs.get('dense_inputs', None)
dense_mask = inputs.get('dense_mask', None)
dense_type_ids = inputs.get('dense_type_ids', None)
else:
raise ValueError('Unexpected inputs type to %s.' % self.__class__)
if word_embeddings is None:
word_embeddings = self._embedding_layer(word_ids)
if dense_inputs is not None:
mask = tf.concat([mask, dense_mask], axis=1)
embeddings = self._get_embeddings(word_ids, type_ids, word_embeddings,
dense_inputs, dense_type_ids)
embeddings = self._embedding_norm_layer(embeddings)
embeddings = self._embedding_dropout(embeddings)
if self._embedding_projection is not None:
embeddings = self._embedding_projection(embeddings)
attention_mask = self._attention_mask_layer(embeddings, mask)
encoder_outputs = []
attention_outputs = []
x = embeddings
for i, layer in enumerate(self._transformer_layers):
transformer_output_range = None
if i == self._num_layers - 1:
transformer_output_range = self._output_range
x = layer([x, attention_mask], output_range=transformer_output_range)
if self._config['return_attention_scores']:
x, attention_scores = x
attention_outputs.append(attention_scores)
encoder_outputs.append(x)
last_encoder_output = encoder_outputs[-1]
first_token_tensor = last_encoder_output[:, 0, :]
pooled_output = self._pooler_layer(first_token_tensor)
output = dict(
sequence_output=encoder_outputs[-1],
pooled_output=pooled_output,
encoder_outputs=encoder_outputs)
if self._config['return_attention_scores']:
output['attention_scores'] = attention_outputs
return output
def get_embedding_table(self):
return self._embedding_layer.embeddings
def get_embedding_layer(self):
return self._embedding_layer
def get_config(self):
return dict(self._config)
@property
def transformer_layers(self):
"""List of Transformer layers in the encoder."""
return self._transformer_layers
@property
def pooler_layer(self):
"""The pooler dense layer after the transformer layers."""
return self._pooler_layer
@classmethod
def from_config(cls, config, custom_objects=None):
if 'embedding_layer' in config and config['embedding_layer'] is not None:
warn_string = (
'You are reloading a model that was saved with a '
'potentially-shared embedding layer object. If you contine to '
'train this model, the embedding layer will no longer be shared. '
'To work around this, load the model outside of the Keras API.')
print('WARNING: ' + warn_string)
logging.warn(warn_string)
return cls(**config)
def _get_embeddings(self, word_ids: tf.Tensor, type_ids: tf.Tensor,
word_embeddings: Optional[tf.Tensor],
dense_inputs: Optional[tf.Tensor],
dense_type_ids: Optional[tf.Tensor]) -> tf.Tensor:
if word_embeddings is None:
word_embeddings = self._embedding_layer(word_ids)
if dense_inputs is not None:
# Concat the dense embeddings at sequence end.
word_embeddings = tf.concat([word_embeddings, dense_inputs], axis=1)
type_ids = tf.concat([type_ids, dense_type_ids], axis=1)
type_embeddings = self._type_embedding_layer(type_ids)
# absolute position embeddings.
position_embeddings = self._position_embedding_layer(word_embeddings)
return word_embeddings + position_embeddings + type_embeddings
@tf_keras.utils.register_keras_serializable(package='Text')
class BertEncoder(tf_keras.Model):
"""Bi-directional Transformer-based encoder network.
This network implements a bi-directional Transformer-based encoder as
described in "BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding" (https://arxiv.org/abs/1810.04805). It includes the
embedding lookups and transformer layers, but not the masked language model
or classification task networks.
The default values for this object are taken from the BERT-Base implementation
in "BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding".
*Note* that the network is constructed by
[Keras Functional API](https://keras.io/guides/functional_api/).
Args:
vocab_size: The size of the token vocabulary.
hidden_size: The size of the transformer hidden layers.
num_layers: The number of transformer layers.
num_attention_heads: The number of attention heads for each transformer. The
hidden size must be divisible by the number of attention heads.
max_sequence_length: The maximum sequence length that this encoder can
consume. If None, max_sequence_length uses the value from sequence length.
This determines the variable shape for positional embeddings.
type_vocab_size: The number of types that the 'type_ids' input can take.
inner_dim: The output dimension of the first Dense layer in a two-layer
feedforward network for each transformer.
inner_activation: The activation for the first Dense layer in a two-layer
feedforward network for each transformer.
output_dropout: Dropout probability for the post-attention and output
dropout.
attention_dropout: The dropout rate to use for the attention layers within
the transformer layers.
initializer: The initialzer to use for all weights in this encoder.
output_range: The sequence output range, [0, output_range), by slicing the
target sequence of the last transformer layer. `None` means the entire
target sequence will attend to the source sequence, which yields the full
output.
embedding_width: The width of the word embeddings. If the embedding width is
not equal to hidden size, embedding parameters will be factorized into two
matrices in the shape of ['vocab_size', 'embedding_width'] and
['embedding_width', 'hidden_size'] ('embedding_width' is usually much
smaller than 'hidden_size').
embedding_layer: An optional Layer instance which will be called to generate
embeddings for the input word IDs.
norm_first: Whether to normalize inputs to attention and intermediate dense
layers. If set False, output of attention and intermediate dense layers is
normalized.
dict_outputs: Whether to use a dictionary as the model outputs.
return_all_encoder_outputs: Whether to output sequence embedding outputs of
all encoder transformer layers. Note: when the following `dict_outputs`
argument is True, all encoder outputs are always returned in the dict,
keyed by `encoder_outputs`.
return_attention_scores: Whether to add an additional output containing the
attention scores of all transformer layers. This will be a list of length
`num_layers`, and each element will be in the shape [batch_size,
num_attention_heads, seq_dim, seq_dim].
"""
def __init__(
self,
vocab_size,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_sequence_length=512,
type_vocab_size=16,
inner_dim=3072,
inner_activation=lambda x: tf_keras.activations.gelu(x, approximate=True),
output_dropout=0.1,
attention_dropout=0.1,
initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02),
output_range=None,
embedding_width=None,
embedding_layer=None,
norm_first=False,
dict_outputs=False,
return_all_encoder_outputs=False,
return_attention_scores: bool = False,
**kwargs):
if 'sequence_length' in kwargs:
kwargs.pop('sequence_length')
logging.warning('`sequence_length` is a deprecated argument to '
'`BertEncoder`, which has no effect for a while. Please '
'remove `sequence_length` argument.')
# Handles backward compatible kwargs.
if 'intermediate_size' in kwargs:
inner_dim = kwargs.pop('intermediate_size')
if 'activation' in kwargs:
inner_activation = kwargs.pop('activation')
if 'dropout_rate' in kwargs:
output_dropout = kwargs.pop('dropout_rate')
if 'attention_dropout_rate' in kwargs:
attention_dropout = kwargs.pop('attention_dropout_rate')
activation = tf_keras.activations.get(inner_activation)
initializer = tf_keras.initializers.get(initializer)
word_ids = tf_keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_word_ids')
mask = tf_keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_mask')
type_ids = tf_keras.layers.Input(
shape=(None,), dtype=tf.int32, name='input_type_ids')
if embedding_width is None:
embedding_width = hidden_size
if embedding_layer is None:
embedding_layer_inst = layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=embedding_width,
initializer=tf_utils.clone_initializer(initializer),
name='word_embeddings')
else:
embedding_layer_inst = embedding_layer
word_embeddings = embedding_layer_inst(word_ids)
# Always uses dynamic slicing for simplicity.
position_embedding_layer = layers.PositionEmbedding(
initializer=tf_utils.clone_initializer(initializer),
max_length=max_sequence_length,
name='position_embedding')
position_embeddings = position_embedding_layer(word_embeddings)
type_embedding_layer = layers.OnDeviceEmbedding(
vocab_size=type_vocab_size,
embedding_width=embedding_width,
initializer=tf_utils.clone_initializer(initializer),
use_one_hot=True,
name='type_embeddings')
type_embeddings = type_embedding_layer(type_ids)
embeddings = tf_keras.layers.Add()(
[word_embeddings, position_embeddings, type_embeddings])
embedding_norm_layer = tf_keras.layers.LayerNormalization(
name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)
embeddings = embedding_norm_layer(embeddings)
embeddings = (tf_keras.layers.Dropout(rate=output_dropout)(embeddings))
# We project the 'embedding' output to 'hidden_size' if it is not already
# 'hidden_size'.
if embedding_width != hidden_size:
embedding_projection = tf_keras.layers.EinsumDense(
'...x,xy->...y',
output_shape=hidden_size,
bias_axes='y',
kernel_initializer=tf_utils.clone_initializer(initializer),
name='embedding_projection')
embeddings = embedding_projection(embeddings)
else:
embedding_projection = None
transformer_layers = []
data = embeddings
attention_mask = layers.SelfAttentionMask()(data, mask)
encoder_outputs = []
attention_outputs = []
for i in range(num_layers):
transformer_output_range = None
if i == num_layers - 1:
transformer_output_range = output_range
layer = layers.TransformerEncoderBlock(
num_attention_heads=num_attention_heads,
inner_dim=inner_dim,
inner_activation=inner_activation,
output_dropout=output_dropout,
attention_dropout=attention_dropout,
norm_first=norm_first,
return_attention_scores=return_attention_scores,
kernel_initializer=tf_utils.clone_initializer(initializer),
name='transformer/layer_%d' % i)
transformer_layers.append(layer)
data = layer([data, attention_mask],
output_range=transformer_output_range)
if return_attention_scores:
data, attention_scores = data
attention_outputs.append(attention_scores)
encoder_outputs.append(data)
last_encoder_output = encoder_outputs[-1]
# Applying a tf.slice op (through subscript notation) to a Keras tensor
# like this will create a SliceOpLambda layer. This is better than a Lambda
# layer with Python code, because that is fundamentally less portable.
first_token_tensor = last_encoder_output[:, 0, :]
pooler_layer = tf_keras.layers.Dense(
units=hidden_size,
activation='tanh',
kernel_initializer=tf_utils.clone_initializer(initializer),
name='pooler_transform')
cls_output = pooler_layer(first_token_tensor)
outputs = dict(
sequence_output=encoder_outputs[-1],
pooled_output=cls_output,
encoder_outputs=encoder_outputs,
)
if return_attention_scores:
outputs['attention_scores'] = attention_outputs
if dict_outputs:
super().__init__(
inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs)
else:
cls_output = outputs['pooled_output']
if return_all_encoder_outputs:
encoder_outputs = outputs['encoder_outputs']
outputs = [encoder_outputs, cls_output]
else:
sequence_output = outputs['sequence_output']
outputs = [sequence_output, cls_output]
if return_attention_scores:
outputs.append(attention_outputs)
super().__init__( # pylint: disable=bad-super-call
inputs=[word_ids, mask, type_ids],
outputs=outputs,
**kwargs)
self._pooler_layer = pooler_layer
self._transformer_layers = transformer_layers
self._embedding_norm_layer = embedding_norm_layer
self._embedding_layer = embedding_layer_inst
self._position_embedding_layer = position_embedding_layer
self._type_embedding_layer = type_embedding_layer
if embedding_projection is not None:
self._embedding_projection = embedding_projection
config_dict = {
'vocab_size': vocab_size,
'hidden_size': hidden_size,
'num_layers': num_layers,
'num_attention_heads': num_attention_heads,
'max_sequence_length': max_sequence_length,
'type_vocab_size': type_vocab_size,
'inner_dim': inner_dim,
'inner_activation': tf_utils.serialize_activation(
activation, use_legacy_format=True
),
'output_dropout': output_dropout,
'attention_dropout': attention_dropout,
'initializer': tf_utils.serialize_initializer(
initializer, use_legacy_format=True
),
'output_range': output_range,
'embedding_width': embedding_width,
'embedding_layer': embedding_layer,
'norm_first': norm_first,
'dict_outputs': dict_outputs,
'return_attention_scores': return_attention_scores,
}
# pylint: disable=protected-access
self._setattr_tracking = False
self._config = config_dict
self._setattr_tracking = True
# pylint: enable=protected-access
def get_embedding_table(self):
return self._embedding_layer.embeddings
def get_embedding_layer(self):
return self._embedding_layer
def get_config(self):
return self._config
@property
def transformer_layers(self):
"""List of Transformer layers in the encoder."""
return self._transformer_layers
@property
def pooler_layer(self):
"""The pooler dense layer after the transformer layers."""
return self._pooler_layer
@classmethod
def from_config(cls, config, custom_objects=None):
if 'embedding_layer' in config and config['embedding_layer'] is not None:
warn_string = (
'You are reloading a model that was saved with a '
'potentially-shared embedding layer object. If you contine to '
'train this model, the embedding layer will no longer be shared. '
'To work around this, load the model outside of the Keras API.')
print('WARNING: ' + warn_string)
logging.warn(warn_string)
return cls(**config)