deanna-emery's picture
updates
93528c6
raw
history blame
6.33 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions for creating TFRecord datasets."""
import hashlib
import io
import itertools
from absl import logging
import numpy as np
from PIL import Image
import tensorflow as tf, tf_keras
import multiprocessing as mp
LOG_EVERY = 100
def convert_to_feature(value, value_type=None):
"""Converts the given python object to a tf.train.Feature.
Args:
value: int, float, bytes or a list of them.
value_type: optional, if specified, forces the feature to be of the given
type. Otherwise, type is inferred automatically. Can be one of
['bytes', 'int64', 'float', 'bytes_list', 'int64_list', 'float_list']
Returns:
feature: A tf.train.Feature object.
"""
if value_type is None:
element = value[0] if isinstance(value, list) else value
if isinstance(element, bytes):
value_type = 'bytes'
elif isinstance(element, (int, np.integer)):
value_type = 'int64'
elif isinstance(element, (float, np.floating)):
value_type = 'float'
else:
raise ValueError('Cannot convert type {} to feature'.
format(type(element)))
if isinstance(value, list):
value_type = value_type + '_list'
if value_type == 'int64':
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
elif value_type == 'int64_list':
value = np.asarray(value).astype(np.int64).reshape(-1)
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
elif value_type == 'float':
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
elif value_type == 'float_list':
value = np.asarray(value).astype(np.float32).reshape(-1)
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
elif value_type == 'bytes':
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
elif value_type == 'bytes_list':
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
else:
raise ValueError('Unknown value_type parameter - {}'.format(value_type))
def image_info_to_feature_dict(height, width, filename, image_id,
encoded_str, encoded_format):
"""Convert image information to a dict of features."""
key = hashlib.sha256(encoded_str).hexdigest()
return {
'image/height': convert_to_feature(height),
'image/width': convert_to_feature(width),
'image/filename': convert_to_feature(filename.encode('utf8')),
'image/source_id': convert_to_feature(str(image_id).encode('utf8')),
'image/key/sha256': convert_to_feature(key.encode('utf8')),
'image/encoded': convert_to_feature(encoded_str),
'image/format': convert_to_feature(encoded_format.encode('utf8')),
}
def read_image(image_path):
pil_image = Image.open(image_path)
return np.asarray(pil_image)
def encode_mask_as_png(mask):
pil_image = Image.fromarray(mask)
output_io = io.BytesIO()
pil_image.save(output_io, format='PNG')
return output_io.getvalue()
def write_tf_record_dataset(output_path, annotation_iterator,
process_func, num_shards,
multiple_processes=None, unpack_arguments=True):
"""Iterates over annotations, processes them and writes into TFRecords.
Args:
output_path: The prefix path to create TF record files.
annotation_iterator: An iterator of tuples containing details about the
dataset.
process_func: A function which takes the elements from the tuples of
annotation_iterator as arguments and returns a tuple of (tf.train.Example,
int). The integer indicates the number of annotations that were skipped.
num_shards: int, the number of shards to write for the dataset.
multiple_processes: integer, the number of multiple parallel processes to
use. If None, uses multi-processing with number of processes equal to
`os.cpu_count()`, which is Python's default behavior. If set to 0,
multi-processing is disabled.
Whether or not to use multiple processes to write TF Records.
unpack_arguments:
Whether to unpack the tuples from annotation_iterator as individual
arguments to the process func or to pass the returned value as it is.
Returns:
num_skipped: The total number of skipped annotations.
"""
writers = [
tf.io.TFRecordWriter(
output_path + '-%05d-of-%05d.tfrecord' % (i, num_shards))
for i in range(num_shards)
]
total_num_annotations_skipped = 0
if multiple_processes is None or multiple_processes > 0:
pool = mp.Pool(
processes=multiple_processes)
if unpack_arguments:
tf_example_iterator = pool.starmap(process_func, annotation_iterator)
else:
tf_example_iterator = pool.imap(process_func, annotation_iterator)
else:
if unpack_arguments:
tf_example_iterator = itertools.starmap(process_func, annotation_iterator)
else:
tf_example_iterator = map(process_func, annotation_iterator)
for idx, (tf_example, num_annotations_skipped) in enumerate(
tf_example_iterator):
if idx % LOG_EVERY == 0:
logging.info('On image %d', idx)
total_num_annotations_skipped += num_annotations_skipped
writers[idx % num_shards].write(tf_example.SerializeToString())
if multiple_processes is None or multiple_processes > 0:
pool.close()
pool.join()
for writer in writers:
writer.close()
logging.info('Finished writing, skipped %d annotations.',
total_num_annotations_skipped)
return total_num_annotations_skipped
def check_and_make_dir(directory):
"""Creates the directory if it doesn't exist."""
if not tf.io.gfile.isdir(directory):
tf.io.gfile.makedirs(directory)