Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""2D detection evaluator for the Waymo Open Dataset.""" | |
import pprint | |
from absl import logging | |
import tensorflow as tf, tf_keras | |
from official.vision.ops import box_ops | |
from waymo_open_dataset import label_pb2 | |
from waymo_open_dataset.metrics.python import wod_detection_evaluator | |
from waymo_open_dataset.protos import breakdown_pb2 | |
from waymo_open_dataset.protos import metrics_pb2 | |
def get_2d_detection_default_config(): | |
"""Returns the config proto for WOD 2D detection Evaluation.""" | |
config = metrics_pb2.Config() | |
config.breakdown_generator_ids.append(breakdown_pb2.Breakdown.OBJECT_TYPE) | |
difficulty = config.difficulties.add() | |
difficulty.levels.append(label_pb2.Label.LEVEL_1) | |
difficulty.levels.append(label_pb2.Label.LEVEL_2) | |
config.breakdown_generator_ids.append(breakdown_pb2.Breakdown.ALL_BUT_SIGN) | |
difficulty = config.difficulties.add() | |
difficulty.levels.append(label_pb2.Label.LEVEL_1) | |
difficulty.levels.append(label_pb2.Label.LEVEL_2) | |
config.matcher_type = metrics_pb2.MatcherProto.TYPE_HUNGARIAN | |
config.iou_thresholds.append(0.0) | |
config.iou_thresholds.append(0.7) | |
config.iou_thresholds.append(0.5) | |
config.iou_thresholds.append(0.5) | |
config.iou_thresholds.append(0.5) | |
config.box_type = label_pb2.Label.Box.TYPE_2D | |
for i in range(100): | |
config.score_cutoffs.append(i * 0.01) | |
config.score_cutoffs.append(1.0) | |
return config | |
class WOD2dDetectionEvaluator(wod_detection_evaluator.WODDetectionEvaluator): | |
"""WOD 2D detection evaluation metric class.""" | |
def __init__(self, config=None): | |
if config is None: | |
config = get_2d_detection_default_config() | |
super().__init__(config=config) | |
def _remove_padding(self, tensor_dict, num_valid): | |
"""Remove the paddings of the prediction/groundtruth data.""" | |
result_tensor_dict = {} | |
gather_indices = tf.range(num_valid) | |
for k, v in tensor_dict.items(): | |
if 'frame_id' in k: | |
result_tensor_dict[k] = tf.tile([v], [num_valid]) | |
else: | |
result_tensor_dict[k] = tf.gather(v, gather_indices) | |
return result_tensor_dict | |
def update_state(self, groundtruths, predictions): | |
"""Update the metrics state with prediction and ground-truth data. | |
Args: | |
groundtruths: a dictionary of Tensors including the fields below. | |
Required fields: | |
- source_id: a numpy array of int or string of shape [batch_size]. | |
- num_detections: a numpy array of int of shape [batch_size]. | |
- boxes: a numpy array of float of shape [batch_size, K, 4]. | |
- classes: a numpy array of int of shape [batch_size, K]. | |
- difficulties: a numpy array of int of shape [batch_size, K]. | |
predictions: a dictionary of tensors including the fields below. | |
Required fields: | |
- source_id: a numpy array of int or string of shape [batch_size]. | |
- image_info: a numpy array of float of shape [batch_size, 4, 2]. | |
- num_detections: a numpy array of int of shape [batch_size]. | |
- detection_boxes: a numpy array of float of shape [batch_size, K, 4]. | |
- detection_classes: a numpy array of int of shape [batch_size, K]. | |
- detection_scores: a numpy array of float of shape [batch_size, K]. | |
""" | |
# Preprocess potentially aggregated tensors. | |
for k, v in groundtruths.items(): | |
if isinstance(v, tuple): | |
groundtruths[k] = tf.concat(v, axis=0) | |
for k, v in predictions.items(): | |
if isinstance(v, tuple): | |
predictions[k] = tf.concat(v, axis=0) | |
# Change cyclists' type id from 3 to 4, where 3 is reserved for sign. | |
groundtruth_type = tf.cast(groundtruths['classes'], tf.uint8) | |
groundtruth_type = tf.where( | |
tf.equal(groundtruth_type, 3), | |
tf.ones_like(groundtruth_type) * 4, groundtruth_type) | |
prediction_type = tf.cast(predictions['detection_classes'], tf.uint8) | |
prediction_type = tf.where( | |
tf.equal(prediction_type, 3), | |
tf.ones_like(prediction_type) * 4, prediction_type) | |
# Rescale the detection boxes back to original scale. | |
image_scale = tf.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2)) | |
prediction_bbox = predictions['detection_boxes'] / image_scale | |
batch_size = tf.shape(groundtruths['source_id'])[0] | |
for i in tf.range(batch_size): | |
frame_groundtruths = { | |
'ground_truth_frame_id': | |
groundtruths['source_id'][i], | |
'ground_truth_bbox': | |
box_ops.yxyx_to_cycxhw( | |
tf.cast(groundtruths['boxes'][i], tf.float32)), | |
'ground_truth_type': | |
groundtruth_type[i], | |
'ground_truth_difficulty': | |
tf.cast(groundtruths['difficulties'][i], tf.uint8), | |
} | |
frame_groundtruths = self._remove_padding( | |
frame_groundtruths, groundtruths['num_detections'][i]) | |
frame_predictions = { | |
'prediction_frame_id': | |
groundtruths['source_id'][i], | |
'prediction_bbox': | |
box_ops.yxyx_to_cycxhw( | |
tf.cast(prediction_bbox[i], tf.float32)), | |
'prediction_type': | |
prediction_type[i], | |
'prediction_score': | |
tf.cast(predictions['detection_scores'][i], tf.float32), | |
'prediction_overlap_nlz': | |
tf.zeros_like(predictions['detection_scores'][i], dtype=tf.bool) | |
} | |
frame_predictions = self._remove_padding(frame_predictions, | |
predictions['num_detections'][i]) | |
super().update_state(frame_groundtruths, frame_predictions) | |
def evaluate(self): | |
"""Compute the final metrics.""" | |
ap, _, _, _, _, _, _ = super().evaluate() | |
metric_dict = {} | |
for i, name in enumerate(self._breakdown_names): | |
# Skip sign metrics in 2d detection task. | |
if 'SIGN' in name: | |
continue | |
metric_dict['WOD metrics/{}/AP'.format(name)] = ap[i] | |
pp = pprint.PrettyPrinter() | |
logging.info('WOD Detection Metrics: \n %s', pp.pformat(metric_dict)) | |
return metric_dict | |