deanna-emery's picture
updates
93528c6
raw
history blame
11.4 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Losses used for segmentation models."""
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.vision.dataloaders import utils
EPSILON = 1e-5
class SegmentationLoss:
"""Semantic segmentation loss."""
def __init__(self,
label_smoothing,
class_weights,
ignore_label,
use_groundtruth_dimension,
use_binary_cross_entropy=False,
top_k_percent_pixels=1.0,
gt_is_matting_map=False):
"""Initializes `SegmentationLoss`.
Args:
label_smoothing: A float, if > 0., smooth out one-hot probability by
spreading the amount of probability to all other label classes.
class_weights: A float list containing the weight of each class.
ignore_label: An integer specifying the ignore label.
use_groundtruth_dimension: A boolean, whether to resize the output to
match the dimension of the ground truth.
use_binary_cross_entropy: A boolean, if true, use binary cross entropy
loss, otherwise, use categorical cross entropy.
top_k_percent_pixels: A float, the value lies in [0.0, 1.0]. When its
value < 1., only compute the loss for the top k percent pixels. This is
useful for hard pixel mining.
gt_is_matting_map: If or not the groundtruth mask is a matting map. Note
that the matting map is only supported for 2 class segmentation.
"""
self._label_smoothing = label_smoothing
self._class_weights = class_weights
self._ignore_label = ignore_label
self._use_groundtruth_dimension = use_groundtruth_dimension
self._use_binary_cross_entropy = use_binary_cross_entropy
self._top_k_percent_pixels = top_k_percent_pixels
self._gt_is_matting_map = gt_is_matting_map
def __call__(self, logits, labels, **kwargs):
"""Computes `SegmentationLoss`.
Args:
logits: A float tensor in shape (batch_size, height, width, num_classes)
which is the output of the network.
labels: A tensor in shape (batch_size, height, width, num_layers), which
is the label masks of the ground truth. The num_layers can be > 1 if the
pixels are labeled as multiple classes.
**kwargs: additional keyword arguments.
Returns:
A 0-D float which stores the overall loss of the batch.
"""
_, height, width, num_classes = logits.get_shape().as_list()
output_dtype = logits.dtype
num_layers = labels.get_shape().as_list()[-1]
if not self._use_binary_cross_entropy:
if num_layers > 1:
raise ValueError(
'Groundtruth mask must have only 1 layer if using categorical'
'cross entropy, but got {} layers.'.format(num_layers))
if self._gt_is_matting_map:
if num_classes != 2:
raise ValueError(
'Groundtruth matting map only supports 2 classes, but got {} '
'classes.'.format(num_classes))
if num_layers > 1:
raise ValueError(
'Groundtruth matting map must have only 1 layer, but got {} '
'layers.'.format(num_layers))
class_weights = (
self._class_weights if self._class_weights else [1] * num_classes)
if num_classes != len(class_weights):
raise ValueError(
'Length of class_weights should be {}'.format(num_classes))
class_weights = tf.constant(class_weights, dtype=output_dtype)
if not self._gt_is_matting_map:
labels = tf.cast(labels, tf.int32)
if self._use_groundtruth_dimension:
# TODO(arashwan): Test using align corners to match deeplab alignment.
logits = tf.image.resize(
logits, tf.shape(labels)[1:3], method=tf.image.ResizeMethod.BILINEAR)
else:
labels = tf.image.resize(
labels, (height, width),
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
valid_mask = tf.not_equal(tf.cast(labels, tf.int32), self._ignore_label)
# (batch_size, height, width, num_classes)
labels_with_prob = self.get_labels_with_prob(logits, labels, valid_mask,
**kwargs)
# (batch_size, height, width)
valid_mask = tf.cast(tf.reduce_any(valid_mask, axis=-1), dtype=output_dtype)
if self._use_binary_cross_entropy:
# (batch_size, height, width, num_classes)
cross_entropy_loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=labels_with_prob, logits=logits)
# (batch_size, height, width, num_classes)
cross_entropy_loss *= class_weights
num_valid_values = tf.reduce_sum(valid_mask) * tf.cast(
num_classes, output_dtype)
# (batch_size, height, width, num_classes)
cross_entropy_loss *= valid_mask[..., tf.newaxis]
else:
# (batch_size, height, width)
cross_entropy_loss = tf.nn.softmax_cross_entropy_with_logits(
labels=labels_with_prob, logits=logits)
# If groundtruth is matting map, binarize the value to create the weight
# mask
if self._gt_is_matting_map:
labels = utils.binarize_matting_map(labels)
# (batch_size, height, width)
weight_mask = tf.einsum(
'...y,y->...',
tf.one_hot(
tf.cast(tf.squeeze(labels, axis=-1), tf.int32),
depth=num_classes,
dtype=output_dtype), class_weights)
cross_entropy_loss *= weight_mask
num_valid_values = tf.reduce_sum(valid_mask)
cross_entropy_loss *= valid_mask
if self._top_k_percent_pixels < 1.0:
return self.aggregate_loss_top_k(cross_entropy_loss, num_valid_values)
else:
return tf.reduce_sum(cross_entropy_loss) / (num_valid_values + EPSILON)
def get_labels_with_prob(self, logits, labels, valid_mask, **unused_kwargs):
"""Get a tensor representing the probability of each class for each pixel.
This method can be overridden in subclasses for customizing loss function.
Args:
logits: A float tensor in shape (batch_size, height, width, num_classes)
which is the output of the network.
labels: A tensor in shape (batch_size, height, width, num_layers), which
is the label masks of the ground truth. The num_layers can be > 1 if the
pixels are labeled as multiple classes.
valid_mask: A bool tensor in shape (batch_size, height, width, num_layers)
which indicates the ignored labels in each ground truth layer.
**unused_kwargs: Unused keyword arguments.
Returns:
A float tensor in shape (batch_size, height, width, num_classes).
"""
num_classes = logits.get_shape().as_list()[-1]
if self._gt_is_matting_map:
# (batch_size, height, width, num_classes=2)
train_labels = tf.concat([1 - labels, labels], axis=-1)
else:
labels = tf.cast(labels, tf.int32)
# Assign pixel with ignore label to class -1, which will be ignored by
# tf.one_hot operation.
# (batch_size, height, width, num_masks)
labels = tf.where(valid_mask, labels, -tf.ones_like(labels))
if self._use_binary_cross_entropy:
# (batch_size, height, width, num_masks, num_classes)
one_hot_labels_per_mask = tf.one_hot(
labels,
depth=num_classes,
on_value=True,
off_value=False,
dtype=tf.bool,
axis=-1)
# Aggregate all one-hot labels to get a binary mask in shape
# (batch_size, height, width, num_classes), which represents all the
# classes that a pixel is labeled as.
# For example, if a pixel is labeled as "window" (id=1) and also being a
# part of the "building" (id=3), then its train_labels are [0,1,0,1].
train_labels = tf.cast(
tf.reduce_any(one_hot_labels_per_mask, axis=-2), dtype=logits.dtype)
else:
# (batch_size, height, width, num_classes)
train_labels = tf.one_hot(
tf.squeeze(labels, axis=-1), depth=num_classes, dtype=logits.dtype)
return train_labels * (
1 - self._label_smoothing) + self._label_smoothing / num_classes
def aggregate_loss_top_k(self, pixelwise_loss, num_valid_pixels=None):
"""Aggregate the top-k greatest pixelwise loss.
Args:
pixelwise_loss: a float tensor in shape (batch_size, height, width) which
stores the loss of each pixel.
num_valid_pixels: the number of pixels which are not ignored. If None, all
the pixels are valid.
Returns:
A 0-D float which stores the overall loss of the batch.
"""
pixelwise_loss = tf.reshape(pixelwise_loss, shape=[-1])
top_k_pixels = tf.cast(
self._top_k_percent_pixels
* tf.cast(tf.size(pixelwise_loss), tf.float32),
tf.int32,
)
top_k_losses, _ = tf.math.top_k(pixelwise_loss, k=top_k_pixels)
normalizer = tf.cast(top_k_pixels, top_k_losses.dtype)
if num_valid_pixels is not None:
normalizer = tf.minimum(normalizer,
tf.cast(num_valid_pixels, top_k_losses.dtype))
return tf.reduce_sum(top_k_losses) / (normalizer + EPSILON)
def get_actual_mask_scores(logits, labels, ignore_label):
"""Gets actual mask scores."""
_, height, width, num_classes = logits.get_shape().as_list()
batch_size = tf.shape(logits)[0]
logits = tf.stop_gradient(logits)
labels = tf.image.resize(
labels, (height, width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
predicted_labels = tf.argmax(logits, -1, output_type=tf.int32)
flat_predictions = tf.reshape(predicted_labels, [batch_size, -1])
flat_labels = tf.cast(tf.reshape(labels, [batch_size, -1]), tf.int32)
one_hot_predictions = tf.one_hot(
flat_predictions, num_classes, on_value=True, off_value=False)
one_hot_labels = tf.one_hot(
flat_labels, num_classes, on_value=True, off_value=False)
keep_mask = tf.not_equal(flat_labels, ignore_label)
keep_mask = tf.expand_dims(keep_mask, 2)
overlap = tf.logical_and(one_hot_predictions, one_hot_labels)
overlap = tf.logical_and(overlap, keep_mask)
overlap = tf.reduce_sum(tf.cast(overlap, tf.float32), axis=1)
union = tf.logical_or(one_hot_predictions, one_hot_labels)
union = tf.logical_and(union, keep_mask)
union = tf.reduce_sum(tf.cast(union, tf.float32), axis=1)
actual_scores = tf.divide(overlap, tf.maximum(union, EPSILON))
return actual_scores
class MaskScoringLoss:
"""Mask Scoring loss."""
def __init__(self, ignore_label):
self._ignore_label = ignore_label
self._mse_loss = tf_keras.losses.MeanSquaredError(
reduction=tf_keras.losses.Reduction.NONE)
def __call__(self, predicted_scores, logits, labels):
actual_scores = get_actual_mask_scores(logits, labels, self._ignore_label)
loss = tf_utils.safe_mean(self._mse_loss(actual_scores, predicted_scores))
return loss