Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Multitask Evaluator implementation. | |
The evaluator implements the Orbit `AbstractEvaluator` interface. | |
""" | |
from typing import Dict, List, Optional, Union | |
import gin | |
import orbit | |
import tensorflow as tf, tf_keras | |
from official.core import base_task | |
from official.core import train_utils | |
from official.modeling.multitask import base_model | |
class MultiTaskEvaluator(orbit.AbstractEvaluator): | |
"""Implements the common trainer shared for TensorFlow models.""" | |
def __init__( | |
self, | |
eval_tasks: List[base_task.Task], | |
model: Union[tf_keras.Model, base_model.MultiTaskBaseModel], | |
global_step: Optional[tf.Variable] = None, | |
eval_steps: Optional[Dict[str, int]] = None, | |
checkpoint_exporter: Optional[train_utils.BestCheckpointExporter] = None): | |
"""Initialize common trainer for TensorFlow models. | |
Args: | |
eval_tasks: A list of tasks to evaluate. | |
model: tf_keras.Model instance. | |
global_step: the global step variable. | |
eval_steps: a dictionary of steps to run eval keyed by task names. | |
checkpoint_exporter: an object that has the `maybe_export_checkpoint` | |
interface. | |
""" | |
# Gets the current distribution strategy. If not inside any strategy scope, | |
# it gets a single-replica no-op strategy. | |
self._strategy = tf.distribute.get_strategy() | |
self._tasks = eval_tasks | |
self._model = model | |
self._global_step = global_step or orbit.utils.create_global_step() | |
self._checkpoint_exporter = checkpoint_exporter | |
if hasattr(self.model, "checkpoint_items"): | |
checkpoint_items = self.model.checkpoint_items | |
else: | |
checkpoint_items = {} | |
self._checkpoint = tf.train.Checkpoint( | |
model=self.model, | |
global_step=self.global_step, | |
**checkpoint_items) | |
self._validation_losses = None | |
self._validation_metrics = None | |
# Builds per-task datasets. | |
self.eval_datasets = {} | |
self.eval_steps = eval_steps or {} | |
for task in self.tasks: | |
self.eval_datasets[task.name] = orbit.utils.make_distributed_dataset( | |
self.strategy, task.build_inputs, task.task_config.validation_data) | |
# Builds per-task validation loops. | |
def get_function(task_name, task): | |
task_metrics = self.validation_metrics[task_name] | |
task_loss = self.validation_losses[task_name] | |
if isinstance(self.model, base_model.MultiTaskBaseModel): | |
model = self.model.sub_tasks[task_name] | |
else: | |
model = self.model | |
def step_fn(inputs): | |
logs = task.validation_step(inputs, model=model, metrics=task_metrics) | |
task_loss.update_state(logs[task.loss]) | |
return logs | |
def eval_step_fn(iterator): | |
distributed_outputs = self.strategy.run(step_fn, args=(next(iterator),)) | |
return tf.nest.map_structure(self.strategy.experimental_local_results, | |
distributed_outputs) | |
return orbit.utils.create_loop_fn(eval_step_fn) | |
self.task_fns = { | |
task.name: get_function(task.name, task) for task in self.tasks | |
} | |
def strategy(self): | |
return self._strategy | |
def tasks(self): | |
return self._tasks | |
def model(self): | |
return self._model | |
def global_step(self): | |
return self._global_step | |
def validation_losses(self): | |
"""Accesses the validation loss metric object.""" | |
if self._validation_losses is None: | |
# Builds the per-task metrics and losses. | |
self._validation_losses = {} | |
for task in self.tasks: | |
self._validation_losses[task.name] = tf_keras.metrics.Mean( | |
"validation_loss", dtype=tf.float32) | |
return self._validation_losses | |
def validation_metrics(self): | |
"""Accesses all validation metric metric objects.""" | |
if self._validation_metrics is None: | |
# Builds the per-task metrics and losses. | |
self._validation_metrics = {} | |
for task in self.tasks: | |
self._validation_metrics[task.name] = task.build_metrics(training=False) | |
return self._validation_metrics | |
def checkpoint(self): | |
"""Accesses the training checkpoint.""" | |
return self._checkpoint | |
def evaluate(self, num_steps: tf.Tensor): | |
"""Performs evaluation for each `EvalTask`.""" | |
for metric in self.validation_losses.values(): | |
metric.reset_states() | |
for metrics in self.validation_metrics.values(): | |
for metric in metrics: | |
metric.reset_states() | |
results = {} | |
eval_iters = tf.nest.map_structure(iter, self.eval_datasets) | |
for task in self.tasks: | |
outputs = None | |
name = task.name | |
eval_iter = eval_iters[name] | |
task_eval_steps = self.eval_steps.get(name, None) or num_steps | |
outputs = self.task_fns[name]( | |
eval_iter, | |
task_eval_steps, | |
state=outputs, | |
reduce_fn=task.aggregate_logs) | |
task_metrics = self.validation_metrics[name] | |
task_loss = self.validation_losses[name] | |
logs = {} | |
for metric in task_metrics + [task_loss]: | |
logs[metric.name] = metric.result() | |
if outputs: | |
metrics = task.reduce_aggregated_logs( | |
outputs, global_step=self.global_step) | |
logs.update(metrics) | |
results[name] = logs | |
if self._checkpoint_exporter: | |
self._checkpoint_exporter.maybe_export_checkpoint( | |
self.checkpoint, results, self.global_step.numpy()) | |
return results | |