deanna-emery's picture
updates
93528c6
|
raw
history blame
9.25 kB
# Model Garden NLP Common Training Driver
[train.py](https://github.com/tensorflow/models/blob/master/official/nlp/train.py)
is the common training driver that supports multiple
NLP tasks (e.g., pre-training, GLUE and SQuAD fine-tuning etc) and multiple
models (e.g., BERT, ALBERT, MobileBERT etc).
## Experiment Configuration
[train.py](https://github.com/tensorflow/models/blob/master/official/nlp/train.py)
is driven by configs defined by the [ExperimentConfig](https://github.com/tensorflow/models/blob/master/official/core/config_definitions.py)
including configurations for `task`, `trainer` and `runtime`. The pre-defined
NLP related [ExperimentConfig](https://github.com/tensorflow/models/blob/master/official/core/config_definitions.py) can be found in
[configs/experiment_configs.py](https://github.com/tensorflow/models/blob/master/official/nlp/configs/experiment_configs.py).
## Experiment Registry
We use an [experiment registry](https://github.com/tensorflow/models/blob/master/official/core/exp_factory.py) to build a mapping
between experiment type to experiment configuration instance. For example,
[configs/finetuning_experiments.py](https://github.com/tensorflow/models/blob/master/official/nlp/configs/finetuning_experiments.py)
registers `bert/sentence_prediction` and `bert/squad` experiments. User can use
`--experiment` FLAG to invoke a registered experiment configuration,
e.g., `--experiment=bert/sentence_prediction`.
## Overriding Configuration via Yaml and FLAGS
The registered experiment configuration can be overridden by one or
multiple Yaml files provided by `--config_file` FLAG. For example:
```shell
--config_file=configs/experiments/glue_mnli_matched.yaml \
--config_file=configs/models/bert_en_uncased_base.yaml
```
In addition, experiment configuration can be further overriden by
`params_override` FLAG. For example:
```shell
--params_override=task.train_data.input_path=/some/path,task.hub_module_url=/some/tfhub
```
## Run locally on GPUs
An example command for training a model on local GPUs is below. This command
trains a BERT-base model on GLUE/MNLI-matched which is a sentence prediction
task.
```shell
PARAMS=runtime.distribution_strategy=mirrored # Train no GPU
PARAMS=${PARAMS},task.train_data.input_path=/path-to-your-training-data/
python3 train.py \
--experiment=bert/sentence_prediction \
--mode=train \
--model_dir=/a-folder-to-hold-checkpoints-and-logs/ \
--config_file=configs/models/bert_en_uncased_base.yaml \
--config_file=configs/experiments/glue_mnli_matched.yaml \
--params_override=${PARAMS}
```
Note that you can specify any detailed configuration by appending
to the `PARAMS` variable. For example, if you want to load from a pretrained
checkpoint as initialization (instead of random initialization):
```shell
PARAMS=${PARAMS},task.hub_module_url=https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
```
The configuration entry `task.hub_module_url` uses a URL to a TF-Hub model which
is officially pretrained. See
[List of Pretrained Models](https://github.com/tensorflow/models/blob/master/official/nlp/docs/pretrained_models.md)
for the complete list of pretrained models on TF-Hub. When initializing from a
pretrained model, the encoder architecture of the pretrained model will be used
and the encoder architecture you set in the config
(`configs/models/bert_en_uncased_base.yaml` in this case) will be ignored.
You can change `--mode=train` to `--mode=train_and_eval` if you want to see
evaluation results. But you need to specify the path to the evaluation data by
setting `task.validation_data.input_path` in `PARAMS`.
## Run on Cloud TPUs
Next, we will describe how to run
the [train.py](https://github.com/tensorflow/models/blob/master/official/nlp/train.py)
on Cloud TPUs.
### Setup
First, you need to create a `tf-nightly` TPU with
[ctpu tool](https://github.com/tensorflow/tpu/tree/master/tools/ctpu):
```shell
export TPU_NAME=YOUR_TPU_NAME
ctpu up -name $TPU_NAME --tf-version=nightly --tpu-size=YOUR_TPU_SIZE --project=YOUR_PROJECT
```
and then install Model Garden and required dependencies:
```shell
git clone https://github.com/tensorflow/models.git
export PYTHONPATH=$PYTHONPATH:/path/to/models
pip3 install --user -r official/requirements.txt
```
### Fine-tuning SQuAD with a pre-trained BERT checkpoint
This example fine-tunes a pre-trained BERT checkpoint on the
Stanford Question Answering Dataset (SQuAD) using TPUs.
The [SQuAD website](https://rajpurkar.github.io/SQuAD-explorer/) contains
detailed information about the SQuAD datasets and evaluation. After downloading
the SQuAD datasets and the [pre-trained BERT checkpoints](https://github.com/tensorflow/models/blob/master/official/nlp/docs/pretrained_models.md),
you can run the following command to prepare the `tf_record` files:
```shell
export SQUAD_DIR=~/squad
export BERT_DIR=~/uncased_L-12_H-768_A-12
export OUTPUT_DATA_DIR=gs://some_bucket/datasets
python3 create_finetuning_data.py \
--squad_data_file=${SQUAD_DIR}/train-v1.1.json \
--vocab_file=${BERT_DIR}/vocab.txt \
--train_data_output_path=${OUTPUT_DATA_DIR}/train.tf_record \
--meta_data_file_path=${OUTPUT_DATA_DIR}/squad_meta_data \
--fine_tuning_task_type=squad --max_seq_length=384
```
Note: To create fine-tuning data with SQuAD 2.0, you need to add flag `--version_2_with_negative=True`.
Then, you can start the training and evaluation jobs:
```shell
export SQUAD_DIR=~/squad
export INPUT_DATA_DIR=gs://some_bucket/datasets
export OUTPUT_DIR=gs://some_bucket/my_output_dir
# See the following link for more pre-trained checkpoints:
# https://github.com/tensorflow/models/blob/master/official/nlp/docs/pretrained_models.md
export BERT_DIR=~/uncased_L-12_H-768_A-12
# Override the configurations by FLAGS. Alternatively, you can directly edit
# `configs/experiments/squad_v1.1.yaml` to specify corresponding fields.
# Also note that the training data is the pre-processed tf_record file, while
# the validation file is the raw json file.
export PARAMS=task.train_data.input_path=$INPUT_DATA_DIR/train.tf_record
export PARAMS=$PARAMS,task.validation_data.input_path=$SQUAD_DIR/dev-v1.1.json
export PARAMS=$PARAMS,task.validation_data.vocab_file=$BERT_DIR/vocab.txt
export PARAMS=$PARAMS,task.init_checkpoint=$BERT_DIR/bert_model.ckpt
export PARAMS=$PARAMS,runtime.distribution_strategy=tpu
python3 train.py \
--experiment=bert/squad \
--mode=train_and_eval \
--model_dir=$OUTPUT_DIR \
--config_file=configs/models/bert_en_uncased_base.yaml \
--config_file=configs/experiments/squad_v1.1.yaml \
--tpu=${TPU_NAME} \
--params_override=$PARAMS
```
### Fine-tuning Sentence Classification with BERT from TF-Hub
This example fine-tunes BERT-base from TF-Hub on the Multi-Genre Natural
Language Inference (MultiNLI) corpus using TPUs.
Firstly, you can prepare the fine-tuning data using
[`create_finetuning_data.py`](https://github.com/tensorflow/models/blob/master/official/nlp/data/create_finetuning_data.py) script.
For GLUE tasks, you can (1) download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`, (2) prepare the vocabulary file,
and (3) run the following command:
```shell
export GLUE_DIR=~/glue
export VOCAB_FILE=~/uncased_L-12_H-768_A-12/vocab.txt
export TASK_NAME=MNLI
export OUTPUT_DATA_DIR=gs://some_bucket/datasets
python3 data/create_finetuning_data.py \
--input_data_dir=${GLUE_DIR}/${TASK_NAME}/ \
--vocab_file=${VOCAB_FILE} \
--train_data_output_path=${OUTPUT_DATA_DIR}/${TASK_NAME}_train.tf_record \
--eval_data_output_path=${OUTPUT_DATA_DIR}/${TASK_NAME}_eval.tf_record \
--meta_data_file_path=${OUTPUT_DATA_DIR}/${TASK_NAME}_meta_data \
--fine_tuning_task_type=classification --max_seq_length=128 \
--classification_task_name=${TASK_NAME}
```
Resulting training and evaluation datasets in `tf_record` format will be later
passed to [train.py](train.py).
Then you can execute the following commands to start the training and evaluation
job.
```shell
export INPUT_DATA_DIR=gs://some_bucket/datasets
export OUTPUT_DIR=gs://some_bucket/my_output_dir
# See tfhub BERT collection for more tfhub models:
# https://tfhub.dev/google/collections/bert/1
export BERT_HUB_URL=https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/3
# Override the configurations by FLAGS. Alternatively, you can directly edit
# `configs/experiments/glue_mnli_matched.yaml` to specify corresponding fields.
export PARAMS=task.train_data.input_path=$INPUT_DATA_DIR/mnli_train.tf_record
export PARAMS=$PARAMS,task.validation_data.input_path=$INPUT_DATA_DIR/mnli_eval.tf_record
export PARAMS=$PARAMS,task.hub_module_url=$BERT_HUB_URL
export PARAMS=$PARAMS,runtime.distribution_strategy=tpu
python3 train.py \
--experiment=bert/sentence_prediction \
--mode=train_and_eval \
--model_dir=$OUTPUT_DIR \
--config_file=configs/models/bert_en_uncased_base.yaml \
--config_file=configs/experiments/glue_mnli_matched.yaml \
--tfhub_cache_dir=$OUTPUT_DIR/hub_cache \
--tpu=${TPU_NAME} \
--params_override=$PARAMS
```
You can monitor the training progress in the console and find the output
models in `$OUTPUT_DIR`.