Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for Keras-based transformer block layer.""" | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import reuse_transformer | |
class ReuseTransformerLayerTest(tf.test.TestCase, parameterized.TestCase): | |
def tearDown(self): | |
super(ReuseTransformerLayerTest, self).tearDown() | |
tf_keras.mixed_precision.set_global_policy('float32') | |
def test_layer_creation(self, transformer_cls): | |
test_layer = transformer_cls( | |
num_attention_heads=10, inner_dim=2048, inner_activation='relu') | |
sequence_length = 21 | |
width = 80 | |
# Create a 3-dimensional input (the first dimension is implicit). | |
data_tensor = tf_keras.Input(shape=(sequence_length, width)) | |
output_tensor, _ = test_layer(data_tensor) | |
# The default output of a transformer layer should be the same as the input. | |
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) | |
def test_layer_creation_with_mask(self, transformer_cls): | |
test_layer = transformer_cls( | |
num_attention_heads=10, inner_dim=2048, inner_activation='relu') | |
sequence_length = 21 | |
width = 80 | |
# Create a 3-dimensional input (the first dimension is implicit). | |
data_tensor = tf_keras.Input(shape=(sequence_length, width)) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length)) | |
output_tensor, _ = test_layer([data_tensor, mask_tensor]) | |
# The default output of a transformer layer should be the same as the input. | |
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) | |
def test_layer_invocation(self, transformer_cls): | |
test_layer = transformer_cls( | |
num_attention_heads=10, inner_dim=2048, inner_activation='relu') | |
sequence_length = 21 | |
width = 80 | |
# Create a 3-dimensional input (the first dimension is implicit). | |
data_tensor = tf_keras.Input(shape=(sequence_length, width)) | |
output_tensor = test_layer(data_tensor) | |
# Create a model from the test layer. | |
model = tf_keras.Model(data_tensor, output_tensor) | |
# Invoke the model on test data. We can't validate the output data itself | |
# (the NN is too complex) but this will rule out structural runtime errors. | |
batch_size = 6 | |
input_data = np.random.random_sample( | |
(batch_size, sequence_length, width)) | |
_ = model.predict(input_data) | |
def test_layer_invocation_with_mask(self, transformer_cls): | |
test_layer = transformer_cls( | |
num_attention_heads=10, inner_dim=2048, inner_activation='relu') | |
sequence_length = 21 | |
width = 80 | |
# Create a 3-dimensional input (the first dimension is implicit). | |
data_tensor = tf_keras.Input(shape=(sequence_length, width)) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length)) | |
output_tensor = test_layer([data_tensor, mask_tensor]) | |
# Create a model from the test layer. | |
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor) | |
# Invoke the model on test data. We can't validate the output data itself | |
# (the NN is too complex) but this will rule out structural runtime errors. | |
batch_size = 6 | |
input_data = np.random.random_sample( | |
(batch_size, sequence_length, width)) | |
# The attention mask should be of shape (batch, from_seq_len, to_seq_len), | |
# which here is (batch, sequence_length, sequence_length) | |
mask_data = np.random.randint( | |
2, size=(batch_size, sequence_length, sequence_length)) | |
_ = model.predict([input_data, mask_data]) | |
def test_layer_output_range(self, transformer_cls): | |
test_layer = transformer_cls( | |
num_attention_heads=10, inner_dim=2048, inner_activation='relu') | |
sequence_length = 21 | |
width = 80 | |
batch_size = 6 | |
input_data = np.random.random_sample( | |
(batch_size, sequence_length, width)) | |
mask_data = np.random.randint( | |
2, size=(batch_size, sequence_length, sequence_length)) | |
output_tensor, _ = test_layer([input_data, mask_data]) | |
# The layer only attends to the first token and outputs the first token | |
# embedding. | |
new_layer = transformer_cls( | |
num_attention_heads=10, | |
inner_dim=2048, | |
inner_activation='relu', | |
output_range=1) | |
_ = new_layer([input_data, mask_data]) | |
new_layer.set_weights(test_layer.get_weights()) | |
new_output_tensor, _ = new_layer([input_data, mask_data]) | |
self.assertAllClose( | |
new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01) | |
def test_layer_output_range_with_relative_pe(self, transformer_cls): | |
test_layer = transformer_cls( | |
num_attention_heads=10, inner_dim=2048, inner_activation='relu', | |
use_relative_pe=True) | |
sequence_length = 21 | |
width = 80 | |
batch_size = 6 | |
input_data = np.random.random_sample( | |
(batch_size, sequence_length, width)) | |
mask_data = np.random.randint( | |
2, size=(batch_size, sequence_length, sequence_length)) | |
output_tensor, _ = test_layer([input_data, mask_data]) | |
# The layer only attends to the first token and outputs the first token | |
# embedding. | |
new_layer = transformer_cls( | |
num_attention_heads=10, | |
inner_dim=2048, | |
inner_activation='relu', | |
output_range=1, | |
use_relative_pe=True) | |
_ = new_layer([input_data, mask_data]) | |
new_layer.set_weights(test_layer.get_weights()) | |
new_output_tensor, _ = new_layer([input_data, mask_data]) | |
self.assertAllClose( | |
new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01) | |
def test_layer_output_range_without_mask(self, transformer_cls): | |
test_layer = transformer_cls( | |
num_attention_heads=10, inner_dim=2048, | |
inner_activation='relu', norm_first=True) | |
sequence_length = 21 | |
width = 80 | |
batch_size = 6 | |
input_data = np.random.random_sample( | |
(batch_size, sequence_length, width)) | |
output_tensor, _ = test_layer(input_data) | |
# The layer only attends to the first token and outputs the first token | |
# embedding. | |
new_layer = transformer_cls( | |
num_attention_heads=10, | |
inner_dim=2048, | |
inner_activation='relu', | |
output_range=1, | |
norm_first=True) | |
_ = new_layer(input_data) | |
new_layer.set_weights(test_layer.get_weights()) | |
new_output_tensor, _ = new_layer(input_data) | |
self.assertAllClose( | |
new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01) | |
def test_layer_output_range_with_pre_norm(self, transformer_cls): | |
test_layer = transformer_cls( | |
num_attention_heads=10, inner_dim=2048, | |
inner_activation='relu', norm_first=True) | |
sequence_length = 21 | |
width = 80 | |
batch_size = 6 | |
input_data = np.random.random_sample( | |
(batch_size, sequence_length, width)) | |
mask_data = np.random.randint( | |
2, size=(batch_size, sequence_length, sequence_length)) | |
output_tensor, _ = test_layer([input_data, mask_data]) | |
# The layer only attends to the first token and outputs the first token | |
# embedding. | |
new_layer = transformer_cls( | |
num_attention_heads=10, | |
inner_dim=2048, | |
inner_activation='relu', | |
output_range=1, | |
norm_first=True) | |
_ = new_layer([input_data, mask_data]) | |
new_layer.set_weights(test_layer.get_weights()) | |
new_output_tensor, _ = new_layer([input_data, mask_data]) | |
self.assertAllClose( | |
new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01) | |
def test_layer_invocation_with_float16_dtype(self, transformer_cls): | |
tf_keras.mixed_precision.set_global_policy('mixed_float16') | |
test_layer = transformer_cls( | |
num_attention_heads=10, inner_dim=2048, inner_activation='relu') | |
sequence_length = 21 | |
width = 80 | |
# Create a 3-dimensional input (the first dimension is implicit). | |
data_tensor = tf_keras.Input(shape=(sequence_length, width)) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length)) | |
output_tensor = test_layer([data_tensor, mask_tensor]) | |
# Create a model from the test layer. | |
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor) | |
# Invoke the model on test data. We can't validate the output data itself | |
# (the NN is too complex) but this will rule out structural runtime errors. | |
batch_size = 6 | |
input_data = (np.random.random_sample( | |
(batch_size, sequence_length, width))) | |
# The attention mask should be of shape (batch, from_seq_len, to_seq_len), | |
# which here is (batch, sequence_length, sequence_length) | |
mask_data = np.random.randint( | |
2, size=(batch_size, sequence_length, sequence_length)) | |
_ = model.predict([input_data, mask_data]) | |
def test_transform_with_initializer(self, transformer_cls): | |
test_layer = transformer_cls( | |
num_attention_heads=10, | |
inner_dim=2048, | |
inner_activation='relu', | |
kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02)) | |
sequence_length = 21 | |
width = 80 | |
# Create a 3-dimensional input (the first dimension is implicit). | |
data_tensor = tf_keras.Input(shape=(sequence_length, width)) | |
output, _ = test_layer(data_tensor) | |
# The default output of a transformer layer should be the same as the input. | |
self.assertEqual(data_tensor.shape.as_list(), output.shape.as_list()) | |
def test_dynamic_layer_sequence(self, transformer_cls): | |
test_layer = transformer_cls( | |
num_attention_heads=10, | |
inner_dim=2048, | |
inner_activation='relu', | |
kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02)) | |
# Create a 3-dimensional input (the first dimension is implicit). | |
width = 30 | |
input_tensor = tf_keras.Input(shape=(None, width)) | |
output_tensor, _ = test_layer(input_tensor) | |
model = tf_keras.Model(input_tensor, output_tensor) | |
input_length = 17 | |
input_data = np.ones((1, input_length, width)) | |
output_data = model.predict(input_data) | |
self.assertAllEqual([1, input_length, width], output_data.shape) | |
class ReuseTransformerArgumentTest(tf.test.TestCase, parameterized.TestCase): | |
def test_use_bias_norm_first(self): | |
num_attention_heads = 2 | |
hidden_size = 16 | |
encoder_block = reuse_transformer.ReuseTransformer( | |
num_attention_heads=num_attention_heads, | |
inner_dim=32, | |
inner_activation='relu', | |
output_dropout=0.1, | |
attention_dropout=0.1, | |
use_bias=False, | |
norm_first=True, | |
norm_epsilon=1e-6, | |
inner_dropout=0.1, | |
attention_initializer=tf_keras.initializers.RandomUniform( | |
minval=0., maxval=1.)) | |
# Forward path. | |
dummy_tensor = tf.zeros([2, 4, 16], dtype=tf.float32) | |
dummy_mask = tf.zeros([2, 4, 4], dtype=tf.float32) | |
inputs = [dummy_tensor, dummy_mask] | |
output, _ = encoder_block(inputs) | |
self.assertEqual(output.shape, (2, 4, hidden_size)) | |
def test_get_config(self): | |
num_attention_heads = 2 | |
encoder_block = reuse_transformer.ReuseTransformer( | |
num_attention_heads=num_attention_heads, | |
inner_dim=32, | |
inner_activation='relu', | |
output_dropout=0.1, | |
attention_dropout=0.1, | |
use_bias=False, | |
norm_first=True, | |
norm_epsilon=1e-6, | |
inner_dropout=0.1, | |
attention_initializer=tf_keras.initializers.RandomUniform( | |
minval=0., maxval=1.)) | |
encoder_block_config = encoder_block.get_config() | |
new_encoder_block = reuse_transformer.ReuseTransformer.from_config( | |
encoder_block_config) | |
self.assertEqual(encoder_block_config, new_encoder_block.get_config()) | |
def test_several_attention_axes(self, attention_axes): | |
test_layer = reuse_transformer.ReuseTransformer( | |
inner_dim=32, | |
inner_activation='relu', | |
output_dropout=0.1, | |
attention_dropout=0.1, | |
use_bias=False, | |
norm_first=True, | |
norm_epsilon=1e-6, | |
inner_dropout=0.1, | |
num_attention_heads=10, | |
attention_axes=attention_axes) | |
num_rows = 21 | |
num_cols = 13 | |
width = 80 | |
# Create a 3-dimensional input (the first dimension is implicit). | |
data_tensor = tf_keras.Input(shape=(num_rows, num_cols, width)) | |
output_tensor, _ = test_layer(data_tensor) | |
# The default output of a transformer layer should be the same as the input. | |
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) | |
def test_layer_invocation_with_mask(self, reuse_attention, | |
return_attention_scores, use_relative_pe): | |
test_layer = reuse_transformer.ReuseTransformer( | |
num_attention_heads=10, | |
inner_dim=2048, | |
inner_activation='relu', | |
reuse_attention=reuse_attention, | |
use_relative_pe=use_relative_pe) | |
sequence_length = 21 | |
width = 80 | |
# Create a 3-dimensional input (the first dimension is implicit). | |
data_tensor = tf_keras.Input(shape=(sequence_length, width)) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length)) | |
return_scores_tensor = tf_keras.Input(shape=(1,)) | |
reuse_attention_scores = tf_keras.Input( | |
shape=(10, sequence_length, sequence_length)) | |
output_tensor, _ = test_layer( | |
[data_tensor, mask_tensor, reuse_attention_scores]) | |
# Create a model from the test layer. | |
model = tf_keras.Model( | |
([data_tensor, mask_tensor, reuse_attention_scores], | |
return_scores_tensor), output_tensor) | |
# Invoke the model on test data. We can't validate the output data itself | |
# (the NN is too complex) but this will rule out structural runtime errors. | |
batch_size = 6 | |
input_data = np.random.random_sample( | |
(batch_size, sequence_length, width)) | |
# The attention mask should be of shape (batch, from_seq_len, to_seq_len), | |
# which here is (batch, sequence_length, sequence_length) | |
mask_data = np.random.randint( | |
2, size=(batch_size, sequence_length, sequence_length)) | |
reuse_scores = np.random.rand( | |
batch_size, 10, sequence_length, sequence_length) | |
_ = model.predict([input_data, mask_data, reuse_scores], | |
return_attention_scores) | |
def test_layer_invocation_with_float16_with_relative_pe( | |
self, use_relative_pe, pe_max_seq_length): | |
tf_keras.mixed_precision.set_global_policy('mixed_float16') | |
test_layer = reuse_transformer.ReuseTransformer( | |
num_attention_heads=10, inner_dim=2048, inner_activation='relu', | |
use_relative_pe=use_relative_pe, pe_max_seq_length=pe_max_seq_length) | |
sequence_length = 21 | |
width = 80 | |
# Create a 3-dimensional input (the first dimension is implicit). | |
data_tensor = tf_keras.Input(shape=(sequence_length, width)) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length)) | |
output_tensor = test_layer([data_tensor, mask_tensor]) | |
# Create a model from the test layer. | |
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor) | |
# Invoke the model on test data. We can't validate the output data itself | |
# (the NN is too complex) but this will rule out structural runtime errors. | |
batch_size = 6 | |
input_data = (np.random.random_sample( | |
(batch_size, sequence_length, width))) | |
# The attention mask should be of shape (batch, from_seq_len, to_seq_len), | |
# which here is (batch, sequence_length, sequence_length) | |
mask_data = np.random.randint( | |
2, size=(batch_size, sequence_length, sequence_length)) | |
_ = model.predict([input_data, mask_data]) | |
if __name__ == '__main__': | |
tf.test.main() | |