deanna-emery's picture
updates
93528c6
raw
history blame
17.5 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for Keras-based transformer block layer."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.modeling.layers import reuse_transformer
@parameterized.named_parameters(
('base', reuse_transformer.ReuseTransformer))
class ReuseTransformerLayerTest(tf.test.TestCase, parameterized.TestCase):
def tearDown(self):
super(ReuseTransformerLayerTest, self).tearDown()
tf_keras.mixed_precision.set_global_policy('float32')
def test_layer_creation(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=10, inner_dim=2048, inner_activation='relu')
sequence_length = 21
width = 80
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
output_tensor, _ = test_layer(data_tensor)
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list())
def test_layer_creation_with_mask(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=10, inner_dim=2048, inner_activation='relu')
sequence_length = 21
width = 80
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor, _ = test_layer([data_tensor, mask_tensor])
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list())
def test_layer_invocation(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=10, inner_dim=2048, inner_activation='relu')
sequence_length = 21
width = 80
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
output_tensor = test_layer(data_tensor)
# Create a model from the test layer.
model = tf_keras.Model(data_tensor, output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = np.random.random_sample(
(batch_size, sequence_length, width))
_ = model.predict(input_data)
def test_layer_invocation_with_mask(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=10, inner_dim=2048, inner_activation='relu')
sequence_length = 21
width = 80
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# Create a model from the test layer.
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = np.random.random_sample(
(batch_size, sequence_length, width))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
_ = model.predict([input_data, mask_data])
def test_layer_output_range(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=10, inner_dim=2048, inner_activation='relu')
sequence_length = 21
width = 80
batch_size = 6
input_data = np.random.random_sample(
(batch_size, sequence_length, width))
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
output_tensor, _ = test_layer([input_data, mask_data])
# The layer only attends to the first token and outputs the first token
# embedding.
new_layer = transformer_cls(
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu',
output_range=1)
_ = new_layer([input_data, mask_data])
new_layer.set_weights(test_layer.get_weights())
new_output_tensor, _ = new_layer([input_data, mask_data])
self.assertAllClose(
new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01)
def test_layer_output_range_with_relative_pe(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=10, inner_dim=2048, inner_activation='relu',
use_relative_pe=True)
sequence_length = 21
width = 80
batch_size = 6
input_data = np.random.random_sample(
(batch_size, sequence_length, width))
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
output_tensor, _ = test_layer([input_data, mask_data])
# The layer only attends to the first token and outputs the first token
# embedding.
new_layer = transformer_cls(
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu',
output_range=1,
use_relative_pe=True)
_ = new_layer([input_data, mask_data])
new_layer.set_weights(test_layer.get_weights())
new_output_tensor, _ = new_layer([input_data, mask_data])
self.assertAllClose(
new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01)
def test_layer_output_range_without_mask(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=10, inner_dim=2048,
inner_activation='relu', norm_first=True)
sequence_length = 21
width = 80
batch_size = 6
input_data = np.random.random_sample(
(batch_size, sequence_length, width))
output_tensor, _ = test_layer(input_data)
# The layer only attends to the first token and outputs the first token
# embedding.
new_layer = transformer_cls(
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu',
output_range=1,
norm_first=True)
_ = new_layer(input_data)
new_layer.set_weights(test_layer.get_weights())
new_output_tensor, _ = new_layer(input_data)
self.assertAllClose(
new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01)
def test_layer_output_range_with_pre_norm(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=10, inner_dim=2048,
inner_activation='relu', norm_first=True)
sequence_length = 21
width = 80
batch_size = 6
input_data = np.random.random_sample(
(batch_size, sequence_length, width))
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
output_tensor, _ = test_layer([input_data, mask_data])
# The layer only attends to the first token and outputs the first token
# embedding.
new_layer = transformer_cls(
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu',
output_range=1,
norm_first=True)
_ = new_layer([input_data, mask_data])
new_layer.set_weights(test_layer.get_weights())
new_output_tensor, _ = new_layer([input_data, mask_data])
self.assertAllClose(
new_output_tensor, output_tensor[:, 0:1, :], atol=0.002, rtol=0.01)
def test_layer_invocation_with_float16_dtype(self, transformer_cls):
tf_keras.mixed_precision.set_global_policy('mixed_float16')
test_layer = transformer_cls(
num_attention_heads=10, inner_dim=2048, inner_activation='relu')
sequence_length = 21
width = 80
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# Create a model from the test layer.
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = (np.random.random_sample(
(batch_size, sequence_length, width)))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
_ = model.predict([input_data, mask_data])
def test_transform_with_initializer(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu',
kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02))
sequence_length = 21
width = 80
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
output, _ = test_layer(data_tensor)
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output.shape.as_list())
def test_dynamic_layer_sequence(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu',
kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02))
# Create a 3-dimensional input (the first dimension is implicit).
width = 30
input_tensor = tf_keras.Input(shape=(None, width))
output_tensor, _ = test_layer(input_tensor)
model = tf_keras.Model(input_tensor, output_tensor)
input_length = 17
input_data = np.ones((1, input_length, width))
output_data = model.predict(input_data)
self.assertAllEqual([1, input_length, width], output_data.shape)
class ReuseTransformerArgumentTest(tf.test.TestCase, parameterized.TestCase):
def test_use_bias_norm_first(self):
num_attention_heads = 2
hidden_size = 16
encoder_block = reuse_transformer.ReuseTransformer(
num_attention_heads=num_attention_heads,
inner_dim=32,
inner_activation='relu',
output_dropout=0.1,
attention_dropout=0.1,
use_bias=False,
norm_first=True,
norm_epsilon=1e-6,
inner_dropout=0.1,
attention_initializer=tf_keras.initializers.RandomUniform(
minval=0., maxval=1.))
# Forward path.
dummy_tensor = tf.zeros([2, 4, 16], dtype=tf.float32)
dummy_mask = tf.zeros([2, 4, 4], dtype=tf.float32)
inputs = [dummy_tensor, dummy_mask]
output, _ = encoder_block(inputs)
self.assertEqual(output.shape, (2, 4, hidden_size))
def test_get_config(self):
num_attention_heads = 2
encoder_block = reuse_transformer.ReuseTransformer(
num_attention_heads=num_attention_heads,
inner_dim=32,
inner_activation='relu',
output_dropout=0.1,
attention_dropout=0.1,
use_bias=False,
norm_first=True,
norm_epsilon=1e-6,
inner_dropout=0.1,
attention_initializer=tf_keras.initializers.RandomUniform(
minval=0., maxval=1.))
encoder_block_config = encoder_block.get_config()
new_encoder_block = reuse_transformer.ReuseTransformer.from_config(
encoder_block_config)
self.assertEqual(encoder_block_config, new_encoder_block.get_config())
@parameterized.parameters({'attention_axes': None}, {'attention_axes': [1]},
{'attention_axes': [2]}, {'attention_axes': [1, 2]})
def test_several_attention_axes(self, attention_axes):
test_layer = reuse_transformer.ReuseTransformer(
inner_dim=32,
inner_activation='relu',
output_dropout=0.1,
attention_dropout=0.1,
use_bias=False,
norm_first=True,
norm_epsilon=1e-6,
inner_dropout=0.1,
num_attention_heads=10,
attention_axes=attention_axes)
num_rows = 21
num_cols = 13
width = 80
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(num_rows, num_cols, width))
output_tensor, _ = test_layer(data_tensor)
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list())
@parameterized.named_parameters(
('plain', False, False, False),
('plain_returnscore', False, True, False),
('plain_with_relative_pe', False, False, True),
('reuse_all', True, False, False),
('reuse_all_returnscore', True, True, False),
('reuse_all_with_relative_pe', True, False, True),
('reuse_5', 5, False, False),
('reuse_5_returnscore', 5, True, False),
('reuse_5_with_relative_pe', 5, False, True),)
def test_layer_invocation_with_mask(self, reuse_attention,
return_attention_scores, use_relative_pe):
test_layer = reuse_transformer.ReuseTransformer(
num_attention_heads=10,
inner_dim=2048,
inner_activation='relu',
reuse_attention=reuse_attention,
use_relative_pe=use_relative_pe)
sequence_length = 21
width = 80
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
return_scores_tensor = tf_keras.Input(shape=(1,))
reuse_attention_scores = tf_keras.Input(
shape=(10, sequence_length, sequence_length))
output_tensor, _ = test_layer(
[data_tensor, mask_tensor, reuse_attention_scores])
# Create a model from the test layer.
model = tf_keras.Model(
([data_tensor, mask_tensor, reuse_attention_scores],
return_scores_tensor), output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = np.random.random_sample(
(batch_size, sequence_length, width))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
reuse_scores = np.random.rand(
batch_size, 10, sequence_length, sequence_length)
_ = model.predict([input_data, mask_data, reuse_scores],
return_attention_scores)
@parameterized.named_parameters(
('without_relative_pe_with_pe_max_seq_length_10', False, 10),
('with_relative_pe_with_pe_max_seq_length_10', True, 10),
('without_relative_pe_with_pe_max_seq_length_100', False, 100),
('with_relative_pe_with_pe_max_seq_length_100', True, 100))
def test_layer_invocation_with_float16_with_relative_pe(
self, use_relative_pe, pe_max_seq_length):
tf_keras.mixed_precision.set_global_policy('mixed_float16')
test_layer = reuse_transformer.ReuseTransformer(
num_attention_heads=10, inner_dim=2048, inner_activation='relu',
use_relative_pe=use_relative_pe, pe_max_seq_length=pe_max_seq_length)
sequence_length = 21
width = 80
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# Create a model from the test layer.
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = (np.random.random_sample(
(batch_size, sequence_length, width)))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
_ = model.predict([input_data, mask_data])
if __name__ == '__main__':
tf.test.main()