Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""A binary/library to export TF-NLP serving `SavedModel`.""" | |
import dataclasses | |
import os | |
from typing import Any, Dict, Text | |
from absl import app | |
from absl import flags | |
import yaml | |
from official.core import base_task | |
from official.core import task_factory | |
from official.modeling import hyperparams | |
from official.modeling.hyperparams import base_config | |
from official.nlp.serving import export_savedmodel_util | |
from official.nlp.serving import serving_modules | |
from official.nlp.tasks import masked_lm | |
from official.nlp.tasks import question_answering | |
from official.nlp.tasks import sentence_prediction | |
from official.nlp.tasks import tagging | |
from official.nlp.tasks import translation | |
FLAGS = flags.FLAGS | |
SERVING_MODULES = { | |
sentence_prediction.SentencePredictionTask: | |
serving_modules.SentencePrediction, | |
masked_lm.MaskedLMTask: | |
serving_modules.MaskedLM, | |
question_answering.QuestionAnsweringTask: | |
serving_modules.QuestionAnswering, | |
tagging.TaggingTask: | |
serving_modules.Tagging, | |
translation.TranslationTask: | |
serving_modules.Translation | |
} | |
def define_flags(): | |
"""Defines flags.""" | |
flags.DEFINE_string("task_name", "SentencePrediction", "The task to export.") | |
flags.DEFINE_string("config_file", None, | |
"The path to task/experiment yaml config file.") | |
flags.DEFINE_string( | |
"checkpoint_path", None, | |
"Object-based checkpoint path, from the training model directory.") | |
flags.DEFINE_string("export_savedmodel_dir", None, | |
"Output saved model directory.") | |
flags.DEFINE_string( | |
"serving_params", None, | |
"a YAML/JSON string or csv string for the serving parameters.") | |
flags.DEFINE_string( | |
"function_keys", None, | |
"A string key to retrieve pre-defined serving signatures.") | |
flags.DEFINE_string( | |
"module_key", None, | |
"For multi-task case, load the export module weights from a specific " | |
"checkpoint item.") | |
flags.DEFINE_bool("convert_tpu", False, "") | |
flags.DEFINE_multi_integer("allowed_batch_size", None, | |
"Allowed batch sizes for batching ops.") | |
flags.DEFINE_integer("num_batch_threads", 4, | |
"Number of threads to do TPU batching.") | |
flags.DEFINE_integer("batch_timeout_micros", 100000, | |
"TPU batch function timeout in microseconds.") | |
flags.DEFINE_integer("max_enqueued_batches", 1000, | |
"Max number of batches in queue for TPU batching.") | |
def lookup_export_module(task: base_task.Task): | |
export_module_cls = SERVING_MODULES.get(task.__class__, None) | |
if export_module_cls is None: | |
ValueError("No registered export module for the task: %s", task.__class__) | |
return export_module_cls | |
def create_export_module(*, task_name: Text, config_file: Text, | |
serving_params: Dict[Text, Any]): | |
"""Creates a ExportModule.""" | |
task_config_cls = None | |
task_cls = None | |
# pylint: disable=protected-access | |
for key, value in task_factory._REGISTERED_TASK_CLS.items(): | |
print(key.__name__) | |
if task_name in key.__name__: | |
task_config_cls, task_cls = key, value | |
break | |
if task_cls is None: | |
raise ValueError("Failed to identify the task class. The provided task " | |
f"name is {task_name}") | |
# pylint: enable=protected-access | |
# TODO(hongkuny): Figure out how to separate the task config from experiments. | |
class Dummy(base_config.Config): | |
task: task_config_cls = dataclasses.field(default_factory=task_config_cls) | |
dummy_exp = Dummy() | |
dummy_exp = hyperparams.override_params_dict( | |
dummy_exp, config_file, is_strict=False) | |
dummy_exp.task.validation_data = None | |
task = task_cls(dummy_exp.task) | |
model = task.build_model() | |
export_module_cls = lookup_export_module(task) | |
params = export_module_cls.Params(**serving_params) | |
return export_module_cls(params=params, model=model) | |
def main(_): | |
serving_params = yaml.load( | |
hyperparams.nested_csv_str_to_json_str(FLAGS.serving_params), | |
Loader=yaml.FullLoader) | |
export_module = create_export_module( | |
task_name=FLAGS.task_name, | |
config_file=FLAGS.config_file, | |
serving_params=serving_params) | |
export_dir = export_savedmodel_util.export( | |
export_module, | |
function_keys=[FLAGS.function_keys], | |
checkpoint_path=FLAGS.checkpoint_path, | |
export_savedmodel_dir=FLAGS.export_savedmodel_dir, | |
module_key=FLAGS.module_key) | |
if FLAGS.convert_tpu: | |
# pylint: disable=g-import-not-at-top | |
from cloud_tpu.inference_converter_v2 import converter_options_v2_pb2 | |
from cloud_tpu.inference_converter_v2.python import converter | |
tpu_dir = os.path.join(export_dir, "tpu") | |
batch_options = [] | |
if FLAGS.allowed_batch_size is not None: | |
allowed_batch_sizes = sorted(FLAGS.allowed_batch_size) | |
batch_option = converter_options_v2_pb2.BatchOptionsV2( | |
num_batch_threads=FLAGS.num_batch_threads, | |
max_batch_size=allowed_batch_sizes[-1], | |
batch_timeout_micros=FLAGS.batch_timeout_micros, | |
allowed_batch_sizes=allowed_batch_sizes, | |
max_enqueued_batches=FLAGS.max_enqueued_batches | |
) | |
batch_options.append(batch_option) | |
converter_options = converter_options_v2_pb2.ConverterOptionsV2( | |
tpu_functions=[ | |
converter_options_v2_pb2.TpuFunction(function_alias="tpu_candidate") | |
], | |
batch_options=batch_options, | |
) | |
converter.ConvertSavedModel(export_dir, tpu_dir, converter_options) | |
if __name__ == "__main__": | |
define_flags() | |
app.run(main) | |