deanna-emery's picture
updates
93528c6
raw
history blame
12.6 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sentence prediction (classification) task."""
import dataclasses
from typing import List, Union, Optional
from absl import logging
import numpy as np
import orbit
from scipy import stats
from sklearn import metrics as sklearn_metrics
import tensorflow as tf, tf_keras
from official.core import base_task
from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
from official.nlp.data import data_loader_factory
from official.nlp.modeling import models
from official.nlp.tasks import utils
METRIC_TYPES = frozenset(
['accuracy', 'f1', 'matthews_corrcoef', 'pearson_spearman_corr'])
@dataclasses.dataclass
class ModelConfig(base_config.Config):
"""A classifier/regressor configuration."""
num_classes: int = 0
use_encoder_pooler: bool = False
encoder: encoders.EncoderConfig = dataclasses.field(default_factory=encoders.EncoderConfig)
@dataclasses.dataclass
class SentencePredictionConfig(cfg.TaskConfig):
"""The model config."""
# At most one of `init_checkpoint` and `hub_module_url` can
# be specified.
init_checkpoint: str = ''
init_cls_pooler: bool = False
hub_module_url: str = ''
metric_type: str = 'accuracy'
# Defines the concrete model config at instantiation time.
model: ModelConfig = dataclasses.field(default_factory=ModelConfig)
train_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig)
validation_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig)
@task_factory.register_task_cls(SentencePredictionConfig)
class SentencePredictionTask(base_task.Task):
"""Task object for sentence_prediction."""
def __init__(self, params: cfg.TaskConfig, logging_dir=None, name=None):
super().__init__(params, logging_dir, name=name)
if params.metric_type not in METRIC_TYPES:
raise ValueError('Invalid metric_type: {}'.format(params.metric_type))
self.metric_type = params.metric_type
if hasattr(params.train_data, 'label_field'):
self.label_field = params.train_data.label_field
else:
self.label_field = 'label_ids'
def build_model(self):
if self.task_config.hub_module_url and self.task_config.init_checkpoint:
raise ValueError('At most one of `hub_module_url` and '
'`init_checkpoint` can be specified.')
if self.task_config.hub_module_url:
encoder_network = utils.get_encoder_from_hub(
self.task_config.hub_module_url)
else:
encoder_network = encoders.build_encoder(self.task_config.model.encoder)
encoder_cfg = self.task_config.model.encoder.get()
if self.task_config.model.encoder.type == 'xlnet':
return models.XLNetClassifier(
network=encoder_network,
num_classes=self.task_config.model.num_classes,
initializer=tf_keras.initializers.RandomNormal(
stddev=encoder_cfg.initializer_range))
else:
return models.BertClassifier(
network=encoder_network,
num_classes=self.task_config.model.num_classes,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
use_encoder_pooler=self.task_config.model.use_encoder_pooler)
def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
label_ids = labels[self.label_field]
if self.task_config.model.num_classes == 1:
loss = tf_keras.losses.mean_squared_error(label_ids, model_outputs)
else:
loss = tf_keras.losses.sparse_categorical_crossentropy(
label_ids, tf.cast(model_outputs, tf.float32), from_logits=True)
if aux_losses:
loss += tf.add_n(aux_losses)
return tf_utils.safe_mean(loss)
def build_inputs(self, params, input_context=None):
"""Returns tf.data.Dataset for sentence_prediction task."""
if params.input_path == 'dummy':
def dummy_data(_):
dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
x = dict(
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids)
if self.task_config.model.num_classes == 1:
y = tf.zeros((1,), dtype=tf.float32)
else:
y = tf.zeros((1, 1), dtype=tf.int32)
x[self.label_field] = y
return x
dataset = tf.data.Dataset.range(1)
dataset = dataset.repeat()
dataset = dataset.map(
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset
return data_loader_factory.get_data_loader(params).load(input_context)
def build_metrics(self, training=None):
del training
if self.task_config.model.num_classes == 1:
metrics = [tf_keras.metrics.MeanSquaredError()]
elif self.task_config.model.num_classes == 2:
metrics = [
tf_keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy'),
tf_keras.metrics.AUC(name='auc', curve='PR'),
]
else:
metrics = [
tf_keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy'),
]
return metrics
def process_metrics(self, metrics, labels, model_outputs):
for metric in metrics:
if metric.name == 'auc':
# Convert the logit to probability and extract the probability of True..
metric.update_state(
labels[self.label_field],
tf.expand_dims(tf.nn.softmax(model_outputs)[:, 1], axis=1))
if metric.name == 'cls_accuracy':
metric.update_state(labels[self.label_field], model_outputs)
def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
compiled_metrics.update_state(labels[self.label_field], model_outputs)
def validation_step(self, inputs, model: tf_keras.Model, metrics=None):
features, labels = inputs, inputs
outputs = self.inference_step(features, model)
loss = self.build_losses(
labels=labels, model_outputs=outputs, aux_losses=model.losses)
logs = {self.loss: loss}
if metrics:
self.process_metrics(metrics, labels, outputs)
if model.compiled_metrics:
self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics or []})
logs.update({m.name: m.result() for m in model.metrics})
if self.metric_type == 'matthews_corrcoef':
logs.update({
'sentence_prediction': # Ensure one prediction along batch dimension.
tf.expand_dims(tf.math.argmax(outputs, axis=1), axis=1),
'labels':
labels[self.label_field],
})
else:
logs.update({
'sentence_prediction': outputs,
'labels': labels[self.label_field],
})
return logs
def aggregate_logs(self, state=None, step_outputs=None):
if self.metric_type == 'accuracy':
return None
if state is None:
state = {'sentence_prediction': [], 'labels': []}
state['sentence_prediction'].append(
np.concatenate([v.numpy() for v in step_outputs['sentence_prediction']],
axis=0))
state['labels'].append(
np.concatenate([v.numpy() for v in step_outputs['labels']], axis=0))
return state
def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
if self.metric_type == 'accuracy':
return None
preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
labels = np.concatenate(aggregated_logs['labels'], axis=0)
if self.metric_type == 'f1':
preds = np.argmax(preds, axis=1)
return {self.metric_type: sklearn_metrics.f1_score(labels, preds)}
elif self.metric_type == 'matthews_corrcoef':
preds = np.reshape(preds, -1)
labels = np.reshape(labels, -1)
return {
self.metric_type: sklearn_metrics.matthews_corrcoef(preds, labels)
}
elif self.metric_type == 'pearson_spearman_corr':
preds = np.reshape(preds, -1)
labels = np.reshape(labels, -1)
pearson_corr = stats.pearsonr(preds, labels)[0]
spearman_corr = stats.spearmanr(preds, labels)[0]
corr_metric = (pearson_corr + spearman_corr) / 2
return {self.metric_type: corr_metric}
def initialize(self, model):
"""Load a pretrained checkpoint (if exists) and then train from iter 0."""
ckpt_dir_or_file = self.task_config.init_checkpoint
logging.info('Trying to load pretrained checkpoint from %s',
ckpt_dir_or_file)
if ckpt_dir_or_file and tf.io.gfile.isdir(ckpt_dir_or_file):
ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
if not ckpt_dir_or_file:
logging.info('No checkpoint file found from %s. Will not load.',
ckpt_dir_or_file)
return
pretrain2finetune_mapping = {
'encoder': model.checkpoint_items['encoder'],
}
if self.task_config.init_cls_pooler:
# This option is valid when use_encoder_pooler is false.
pretrain2finetune_mapping[
'next_sentence.pooler_dense'] = model.checkpoint_items[
'sentence_prediction.pooler_dense']
ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
logging.info('Finished loading pretrained checkpoint from %s',
ckpt_dir_or_file)
def predict(task: SentencePredictionTask,
params: cfg.DataConfig,
model: tf_keras.Model,
params_aug: Optional[cfg.DataConfig] = None,
test_time_aug_wgt: float = 0.3) -> List[Union[int, float]]:
"""Predicts on the input data.
Args:
task: A `SentencePredictionTask` object.
params: A `cfg.DataConfig` object.
model: A keras.Model.
params_aug: A `cfg.DataConfig` object for augmented data.
test_time_aug_wgt: Test time augmentation weight. The prediction score will
use (1. - test_time_aug_wgt) original prediction plus test_time_aug_wgt
augmented prediction.
Returns:
A list of predictions with length of `num_examples`. For regression task,
each element in the list is the predicted score; for classification task,
each element is the predicted class id.
"""
def predict_step(inputs):
"""Replicated prediction calculation."""
x = inputs
example_id = x.pop('example_id')
outputs = task.inference_step(x, model)
return dict(example_id=example_id, predictions=outputs)
def aggregate_fn(state, outputs):
"""Concatenates model's outputs."""
if state is None:
state = []
for per_replica_example_id, per_replica_batch_predictions in zip(
outputs['example_id'], outputs['predictions']):
state.extend(zip(per_replica_example_id, per_replica_batch_predictions))
return state
dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
task.build_inputs, params)
outputs = utils.predict(predict_step, aggregate_fn, dataset)
# When running on TPU POD, the order of output cannot be maintained,
# so we need to sort by example_id.
outputs = sorted(outputs, key=lambda x: x[0])
is_regression = task.task_config.model.num_classes == 1
if params_aug is not None:
dataset_aug = orbit.utils.make_distributed_dataset(
tf.distribute.get_strategy(), task.build_inputs, params_aug)
outputs_aug = utils.predict(predict_step, aggregate_fn, dataset_aug)
outputs_aug = sorted(outputs_aug, key=lambda x: x[0])
if is_regression:
return [(1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1]
for x, y in zip(outputs, outputs_aug)]
else:
return [
tf.argmax(
(1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1],
axis=-1) for x, y in zip(outputs, outputs_aug)
]
if is_regression:
return [x[1] for x in outputs]
else:
return [tf.argmax(x[1], axis=-1) for x in outputs]