Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The panoptic quality evaluator. | |
The following snippet demonstrates the use of interfaces: | |
evaluator = PanopticQualityEvaluator(...) | |
for _ in range(num_evals): | |
for _ in range(num_batches_per_eval): | |
predictions, groundtruth = predictor.predict(...) # pop a batch. | |
evaluator.update_state(groundtruths, predictions) | |
evaluator.result() # finish one full eval and reset states. | |
See also: https://github.com/cocodataset/cocoapi/ | |
""" | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.vision.evaluation import panoptic_quality | |
def _crop_padding(mask, image_info): | |
"""Crops padded masks to match original image shape. | |
Args: | |
mask: a padded mask tensor. | |
image_info: a tensor that holds information about original and preprocessed | |
images. | |
Returns: | |
cropped and padded masks: tf.Tensor | |
""" | |
image_shape = tf.cast(image_info[0, :], tf.int32) | |
mask = tf.image.crop_to_bounding_box( | |
tf.expand_dims(mask, axis=-1), 0, 0, | |
image_shape[0], image_shape[1]) | |
return tf.expand_dims(mask[:, :, 0], axis=0) | |
class PanopticQualityEvaluator: | |
"""Panoptic Quality metric class.""" | |
def __init__(self, num_categories, ignored_label, max_instances_per_category, | |
offset, is_thing=None, rescale_predictions=False): | |
"""Constructs Panoptic Quality evaluation class. | |
The class provides the interface to Panoptic Quality metrics_fn. | |
Args: | |
num_categories: The number of segmentation categories (or "classes" in the | |
dataset). | |
ignored_label: A category id that is ignored in evaluation, e.g. the void | |
label as defined in COCO panoptic segmentation dataset. | |
max_instances_per_category: The maximum number of instances for each | |
category. Used in ensuring unique instance labels. | |
offset: The maximum number of unique labels. This is used, by multiplying | |
the ground-truth labels, to generate unique ids for individual regions | |
of overlap between ground-truth and predicted segments. | |
is_thing: A boolean array of length `num_categories`. The entry | |
`is_thing[category_id]` is True iff that category is a "thing" category | |
instead of "stuff." Default to `None`, and it means categories are not | |
classified into these two categories. | |
rescale_predictions: `bool`, whether to scale back prediction to original | |
image sizes. If True, groundtruths['image_info'] is used to rescale | |
predictions. | |
""" | |
self._pq_metric_module = panoptic_quality.PanopticQuality( | |
num_categories, ignored_label, max_instances_per_category, offset) | |
self._is_thing = is_thing | |
self._rescale_predictions = rescale_predictions | |
self._required_prediction_fields = ['category_mask', 'instance_mask'] | |
self._required_groundtruth_fields = ['category_mask', 'instance_mask'] | |
self.reset_states() | |
def name(self): | |
return 'panoptic_quality' | |
def reset_states(self): | |
"""Resets internal states for a fresh run.""" | |
self._pq_metric_module.reset() | |
def result(self): | |
"""Evaluates detection results, and reset_states.""" | |
results = self._pq_metric_module.result(self._is_thing) | |
self.reset_states() | |
return results | |
def _convert_to_numpy(self, groundtruths, predictions): | |
"""Converts tesnors to numpy arrays.""" | |
if groundtruths: | |
labels = tf.nest.map_structure(lambda x: x.numpy(), groundtruths) | |
numpy_groundtruths = {} | |
for key, val in labels.items(): | |
if isinstance(val, tuple): | |
val = np.concatenate(val) | |
numpy_groundtruths[key] = val | |
else: | |
numpy_groundtruths = groundtruths | |
if predictions: | |
outputs = tf.nest.map_structure(lambda x: x.numpy(), predictions) | |
numpy_predictions = {} | |
for key, val in outputs.items(): | |
if isinstance(val, tuple): | |
val = np.concatenate(val) | |
numpy_predictions[key] = val | |
else: | |
numpy_predictions = predictions | |
return numpy_groundtruths, numpy_predictions | |
def update_state(self, groundtruths, predictions): | |
"""Update and aggregate detection results and ground-truth data. | |
Args: | |
groundtruths: a dictionary of Tensors including the fields below. See also | |
different parsers under `../dataloader` for more details. | |
Required fields: | |
- category_mask: a numpy array of uint16 of shape [batch_size, H, W]. | |
- instance_mask: a numpy array of uint16 of shape [batch_size, H, W]. | |
- image_info: [batch, 4, 2], a tensor that holds information about | |
original and preprocessed images. Each entry is in the format of | |
[[original_height, original_width], [input_height, input_width], | |
[y_scale, x_scale], [y_offset, x_offset]], where [desired_height, | |
desired_width] is the actual scaled image size, and [y_scale, x_scale] | |
is the scaling factor, which is the ratio of scaled dimension / | |
original dimension. | |
predictions: a dictionary of tensors including the fields below. See | |
different parsers under `../dataloader` for more details. | |
Required fields: | |
- category_mask: a numpy array of uint16 of shape [batch_size, H, W]. | |
- instance_mask: a numpy array of uint16 of shape [batch_size, H, W]. | |
Raises: | |
ValueError: if the required prediction or ground-truth fields are not | |
present in the incoming `predictions` or `groundtruths`. | |
""" | |
groundtruths, predictions = self._convert_to_numpy(groundtruths, | |
predictions) | |
for k in self._required_prediction_fields: | |
if k not in predictions: | |
raise ValueError( | |
'Missing the required key `{}` in predictions!'.format(k)) | |
for k in self._required_groundtruth_fields: | |
if k not in groundtruths: | |
raise ValueError( | |
'Missing the required key `{}` in groundtruths!'.format(k)) | |
if self._rescale_predictions: | |
for idx in range(len(groundtruths['category_mask'])): | |
image_info = groundtruths['image_info'][idx] | |
groundtruths_ = { | |
'category_mask': | |
_crop_padding(groundtruths['category_mask'][idx], image_info), | |
'instance_mask': | |
_crop_padding(groundtruths['instance_mask'][idx], image_info), | |
} | |
predictions_ = { | |
'category_mask': | |
_crop_padding(predictions['category_mask'][idx], image_info), | |
'instance_mask': | |
_crop_padding(predictions['instance_mask'][idx], image_info), | |
} | |
groundtruths_, predictions_ = self._convert_to_numpy( | |
groundtruths_, predictions_) | |
self._pq_metric_module.compare_and_accumulate( | |
groundtruths_, predictions_) | |
else: | |
for idx in range(len(groundtruths['category_mask'])): | |
groundtruths_ = { | |
'category_mask': groundtruths['category_mask'][idx], | |
'instance_mask': groundtruths['instance_mask'][idx] | |
} | |
predictions_ = { | |
'category_mask': predictions['category_mask'][idx], | |
'instance_mask': predictions['instance_mask'][idx] | |
} | |
self._pq_metric_module.compare_and_accumulate(groundtruths_, | |
predictions_) | |