Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for Panoptic Quality metric. | |
Note that this metric test class is branched from | |
https://github.com/tensorflow/models/blob/master/research/deeplab/evaluation/panoptic_quality_test.py | |
""" | |
from absl.testing import absltest | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.vision.evaluation import panoptic_quality | |
class PanopticQualityTest(absltest.TestCase): | |
def test_perfect_match(self): | |
category_mask = np.zeros([6, 6], np.uint16) | |
instance_mask = np.array([ | |
[1, 1, 1, 1, 1, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 1, 1, 1], | |
[1, 2, 1, 1, 1, 1], | |
], | |
dtype=np.uint16) | |
groundtruths = { | |
'category_mask': category_mask, | |
'instance_mask': instance_mask | |
} | |
predictions = { | |
'category_mask': category_mask, | |
'instance_mask': instance_mask | |
} | |
pq_metric = panoptic_quality.PanopticQuality( | |
num_categories=1, | |
ignored_label=2, | |
max_instances_per_category=16, | |
offset=16) | |
pq_metric.compare_and_accumulate(groundtruths, predictions) | |
np.testing.assert_array_equal(pq_metric.iou_per_class, [2.0]) | |
np.testing.assert_array_equal(pq_metric.tp_per_class, [2]) | |
np.testing.assert_array_equal(pq_metric.fn_per_class, [0]) | |
np.testing.assert_array_equal(pq_metric.fp_per_class, [0]) | |
results = pq_metric.result() | |
np.testing.assert_array_equal(results['pq_per_class'], [1.0]) | |
np.testing.assert_array_equal(results['rq_per_class'], [1.0]) | |
np.testing.assert_array_equal(results['sq_per_class'], [1.0]) | |
self.assertAlmostEqual(results['All_pq'], 1.0) | |
self.assertAlmostEqual(results['All_rq'], 1.0) | |
self.assertAlmostEqual(results['All_sq'], 1.0) | |
self.assertEqual(results['All_num_categories'], 1) | |
def test_totally_wrong(self): | |
category_mask = np.array([ | |
[0, 0, 0, 0, 0, 0], | |
[0, 1, 0, 0, 1, 0], | |
[0, 1, 1, 1, 1, 0], | |
[0, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
], | |
dtype=np.uint16) | |
instance_mask = np.zeros([6, 6], np.uint16) | |
groundtruths = { | |
'category_mask': category_mask, | |
'instance_mask': instance_mask | |
} | |
predictions = { | |
'category_mask': 1 - category_mask, | |
'instance_mask': instance_mask | |
} | |
pq_metric = panoptic_quality.PanopticQuality( | |
num_categories=2, | |
ignored_label=2, | |
max_instances_per_category=1, | |
offset=16) | |
pq_metric.compare_and_accumulate(groundtruths, predictions) | |
np.testing.assert_array_equal(pq_metric.iou_per_class, [0.0, 0.0]) | |
np.testing.assert_array_equal(pq_metric.tp_per_class, [0, 0]) | |
np.testing.assert_array_equal(pq_metric.fn_per_class, [1, 1]) | |
np.testing.assert_array_equal(pq_metric.fp_per_class, [1, 1]) | |
results = pq_metric.result() | |
np.testing.assert_array_equal(results['pq_per_class'], [0.0, 0.0]) | |
np.testing.assert_array_equal(results['rq_per_class'], [0.0, 0.0]) | |
np.testing.assert_array_equal(results['sq_per_class'], [0.0, 0.0]) | |
self.assertAlmostEqual(results['All_pq'], 0.0) | |
self.assertAlmostEqual(results['All_rq'], 0.0) | |
self.assertAlmostEqual(results['All_sq'], 0.0) | |
self.assertEqual(results['All_num_categories'], 2) | |
def test_matches_by_iou(self): | |
groundtruth_instance_mask = np.array( | |
[ | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 2, 2, 2, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
], | |
dtype=np.uint16) | |
good_det_instance_mask = np.array( | |
[ | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 2, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
], | |
dtype=np.uint16) | |
groundtruths = { | |
'category_mask': np.zeros_like(groundtruth_instance_mask), | |
'instance_mask': groundtruth_instance_mask | |
} | |
predictions = { | |
'category_mask': np.zeros_like(good_det_instance_mask), | |
'instance_mask': good_det_instance_mask | |
} | |
pq_metric = panoptic_quality.PanopticQuality( | |
num_categories=1, | |
ignored_label=2, | |
max_instances_per_category=16, | |
offset=16) | |
pq_metric.compare_and_accumulate(groundtruths, predictions) | |
# iou(1, 1) = 28/30 | |
# iou(2, 2) = 6 / 8 | |
np.testing.assert_array_almost_equal(pq_metric.iou_per_class, | |
[28 / 30 + 6 / 8]) | |
np.testing.assert_array_equal(pq_metric.tp_per_class, [2]) | |
np.testing.assert_array_equal(pq_metric.fn_per_class, [0]) | |
np.testing.assert_array_equal(pq_metric.fp_per_class, [0]) | |
results = pq_metric.result() | |
np.testing.assert_array_equal(results['pq_per_class'], | |
[(28 / 30 + 6 / 8) / 2]) | |
np.testing.assert_array_equal(results['rq_per_class'], [1.0]) | |
np.testing.assert_array_equal(results['sq_per_class'], | |
[(28 / 30 + 6 / 8) / 2]) | |
self.assertAlmostEqual(results['All_pq'], (28 / 30 + 6 / 8) / 2) | |
self.assertAlmostEqual(results['All_rq'], 1.0) | |
self.assertAlmostEqual(results['All_sq'], (28 / 30 + 6 / 8) / 2) | |
self.assertEqual(results['All_num_categories'], 1) | |
bad_det_instance_mask = np.array( | |
[ | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 2, 2, 1], | |
[1, 1, 1, 2, 2, 1], | |
[1, 1, 1, 2, 2, 1], | |
[1, 1, 1, 1, 1, 1], | |
], | |
dtype=np.uint16) | |
predictions['instance_mask'] = bad_det_instance_mask | |
pq_metric.reset() | |
pq_metric.compare_and_accumulate(groundtruths, predictions) | |
# iou(1, 1) = 27/32 | |
np.testing.assert_array_almost_equal(pq_metric.iou_per_class, [27 / 32]) | |
np.testing.assert_array_equal(pq_metric.tp_per_class, [1]) | |
np.testing.assert_array_equal(pq_metric.fn_per_class, [1]) | |
np.testing.assert_array_equal(pq_metric.fp_per_class, [1]) | |
results = pq_metric.result() | |
np.testing.assert_array_equal(results['pq_per_class'], [27 / 32 / 2]) | |
np.testing.assert_array_equal(results['rq_per_class'], [0.5]) | |
np.testing.assert_array_equal(results['sq_per_class'], [27 / 32]) | |
self.assertAlmostEqual(results['All_pq'], 27 / 32 / 2) | |
self.assertAlmostEqual(results['All_rq'], 0.5) | |
self.assertAlmostEqual(results['All_sq'], 27 / 32) | |
self.assertEqual(results['All_num_categories'], 1) | |
def test_wrong_instances(self): | |
category_mask = np.array([ | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 2, 2, 1, 2, 2], | |
[1, 2, 2, 1, 2, 2], | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
], | |
dtype=np.uint16) | |
groundtruth_instance_mask = np.zeros([6, 6], dtype=np.uint16) | |
predicted_instance_mask = np.array([ | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 1, 1], | |
[0, 0, 0, 0, 1, 1], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
], | |
dtype=np.uint16) | |
groundtruths = { | |
'category_mask': category_mask, | |
'instance_mask': groundtruth_instance_mask | |
} | |
predictions = { | |
'category_mask': category_mask, | |
'instance_mask': predicted_instance_mask | |
} | |
pq_metric = panoptic_quality.PanopticQuality( | |
num_categories=3, | |
ignored_label=0, | |
max_instances_per_category=10, | |
offset=100) | |
pq_metric.compare_and_accumulate(groundtruths, predictions) | |
np.testing.assert_array_equal(pq_metric.iou_per_class, [0.0, 1.0, 0.0]) | |
np.testing.assert_array_equal(pq_metric.tp_per_class, [0, 1, 0]) | |
np.testing.assert_array_equal(pq_metric.fn_per_class, [0, 0, 1]) | |
np.testing.assert_array_equal(pq_metric.fp_per_class, [0, 0, 2]) | |
results = pq_metric.result() | |
np.testing.assert_array_equal(results['pq_per_class'], [0.0, 1.0, 0.0]) | |
np.testing.assert_array_equal(results['rq_per_class'], [0.0, 1.0, 0.0]) | |
np.testing.assert_array_equal(results['sq_per_class'], [0.0, 1.0, 0.0]) | |
self.assertAlmostEqual(results['All_pq'], 0.5) | |
self.assertAlmostEqual(results['All_rq'], 0.5) | |
self.assertAlmostEqual(results['All_sq'], 0.5) | |
self.assertEqual(results['All_num_categories'], 2) | |
def test_instance_order_is_arbitrary(self): | |
category_mask = np.array([ | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 2, 2, 1, 2, 2], | |
[1, 2, 2, 1, 2, 2], | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
], | |
dtype=np.uint16) | |
groundtruth_instance_mask = np.array([ | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 0, 0, 0], | |
[0, 1, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
], | |
dtype=np.uint16) | |
predicted_instance_mask = np.array([ | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 1, 1], | |
[0, 0, 0, 0, 1, 1], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
], | |
dtype=np.uint16) | |
groundtruths = { | |
'category_mask': category_mask, | |
'instance_mask': groundtruth_instance_mask | |
} | |
predictions = { | |
'category_mask': category_mask, | |
'instance_mask': predicted_instance_mask | |
} | |
pq_metric = panoptic_quality.PanopticQuality( | |
num_categories=3, | |
ignored_label=0, | |
max_instances_per_category=10, | |
offset=100) | |
pq_metric.compare_and_accumulate(groundtruths, predictions) | |
np.testing.assert_array_equal(pq_metric.iou_per_class, [0.0, 1.0, 2.0]) | |
np.testing.assert_array_equal(pq_metric.tp_per_class, [0, 1, 2]) | |
np.testing.assert_array_equal(pq_metric.fn_per_class, [0, 0, 0]) | |
np.testing.assert_array_equal(pq_metric.fp_per_class, [0, 0, 0]) | |
results = pq_metric.result() | |
np.testing.assert_array_equal(results['pq_per_class'], [0.0, 1.0, 1.0]) | |
np.testing.assert_array_equal(results['rq_per_class'], [0.0, 1.0, 1.0]) | |
np.testing.assert_array_equal(results['sq_per_class'], [0.0, 1.0, 1.0]) | |
self.assertAlmostEqual(results['All_pq'], 1.0) | |
self.assertAlmostEqual(results['All_rq'], 1.0) | |
self.assertAlmostEqual(results['All_sq'], 1.0) | |
self.assertEqual(results['All_num_categories'], 2) | |
class PanopticQualityV2Test(tf.test.TestCase): | |
def test_perfect_match(self): | |
panoptic_metrics = panoptic_quality.PanopticQualityV2( | |
name='panoptic_metrics', | |
num_categories=2, | |
) | |
y_true = { | |
'category_mask': tf.ones([1, 6, 6], dtype=tf.int32), | |
'instance_mask': [[ | |
[1, 1, 1, 1, 1, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 1, 1, 1], | |
[1, 2, 1, 1, 1, 1], | |
]], | |
'image_info': tf.constant( | |
[[[6, 6], [6, 6], [1, 1], [0, 0]]], dtype=tf.float32 | |
), | |
} | |
y_pred = y_true | |
panoptic_metrics.update_state(y_true, y_pred) | |
result = panoptic_metrics.result() | |
self.assertAllEqual(result['valid_thing_classes'], [False, True]) | |
self.assertAllEqual(result['valid_stuff_classes'], [False, False]) | |
self.assertAllClose(result['sq_per_class'], [0.0, 1.0], atol=1e-4) | |
self.assertAllClose(result['rq_per_class'], [0.0, 1.0], atol=1e-4) | |
self.assertAllClose(result['pq_per_class'], [0.0, 1.0], atol=1e-4) | |
def test_totally_wrong(self): | |
panoptic_metrics = panoptic_quality.PanopticQualityV2( | |
name='panoptic_metrics', | |
num_categories=4, | |
) | |
y_true = { | |
'category_mask': [[ | |
[1, 1, 1, 1, 1, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 1, 1, 1], | |
[1, 2, 1, 1, 1, 1], | |
]], | |
'instance_mask': [[ | |
[1, 1, 1, 1, 1, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 1, 1, 1], | |
[1, 2, 1, 1, 1, 1], | |
]], | |
'image_info': tf.constant( | |
[[[6, 6], [6, 6], [1, 1], [0, 0]]], dtype=tf.float32 | |
), | |
} | |
y_pred = { | |
'category_mask': tf.constant(y_true['category_mask']) + 1, | |
'instance_mask': y_true['instance_mask'], | |
} | |
panoptic_metrics.update_state(y_true, y_pred) | |
result = panoptic_metrics.result() | |
self.assertAllEqual( | |
result['valid_thing_classes'], [False, True, True, True] | |
) | |
self.assertAllEqual( | |
result['valid_stuff_classes'], [False, False, False, False] | |
) | |
self.assertAllClose(result['sq_per_class'], [0.0, 0.0, 0.0, 0.0], atol=1e-4) | |
self.assertAllClose(result['rq_per_class'], [0.0, 0.0, 0.0, 0.0], atol=1e-4) | |
self.assertAllClose(result['pq_per_class'], [0.0, 0.0, 0.0, 0.0], atol=1e-4) | |
def test_matches_by_iou(self): | |
panoptic_metrics = panoptic_quality.PanopticQualityV2( | |
name='panoptic_metrics', | |
num_categories=2, | |
) | |
y_true = { | |
'category_mask': tf.ones([1, 6, 6], dtype=tf.int32), | |
'instance_mask': [[ | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 2, 2, 2, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
]], | |
'image_info': tf.constant( | |
[[[6, 6], [6, 6], [1, 1], [0, 0]]], dtype=tf.float32 | |
), | |
} | |
y_pred1 = { | |
'category_mask': tf.ones([1, 6, 6], dtype=tf.int32), | |
'instance_mask': [[ | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 2, 2, 2, 2, 1], | |
[1, 2, 2, 2, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
]], | |
} | |
panoptic_metrics.update_state(y_true, y_pred1) | |
result1 = panoptic_metrics.result() | |
self.assertAllEqual(result1['valid_thing_classes'], [False, True]) | |
self.assertAllEqual(result1['valid_stuff_classes'], [False, False]) | |
self.assertAllClose( | |
result1['sq_per_class'], [0.0, (28 / 30 + 6 / 8) / 2], atol=1e-4 | |
) | |
self.assertAllClose(result1['rq_per_class'], [0.0, 1.0], atol=1e-4) | |
self.assertAllClose( | |
result1['pq_per_class'], [0.0, (28 / 30 + 6 / 8) / 2], atol=1e-4 | |
) | |
panoptic_metrics.reset_state() | |
y_pred2 = { | |
'category_mask': tf.ones([1, 6, 6], dtype=tf.int32), | |
'instance_mask': [[ | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 2, 2, 1], | |
[1, 1, 1, 2, 2, 1], | |
[1, 1, 1, 2, 2, 1], | |
[1, 1, 1, 1, 1, 1], | |
]], | |
} | |
panoptic_metrics.update_state(y_true, y_pred2) | |
result2 = panoptic_metrics.result() | |
self.assertAllEqual(result2['valid_thing_classes'], [False, True]) | |
self.assertAllEqual(result2['valid_stuff_classes'], [False, False]) | |
self.assertAllClose(result2['sq_per_class'], [0.0, 27 / 32], atol=1e-4) | |
self.assertAllClose(result2['rq_per_class'], [0.0, 1 / 2], atol=1e-4) | |
self.assertAllClose(result2['pq_per_class'], [0.0, 27 / 64], atol=1e-4) | |
def test_thing_and_stuff(self): | |
panoptic_metrics = panoptic_quality.PanopticQualityV2( | |
name='panoptic_metrics', | |
num_categories=10, | |
is_thing=[ | |
False, | |
True, | |
True, | |
False, | |
True, | |
False, | |
True, | |
False, | |
True, | |
False, | |
], | |
max_num_instances=15, | |
ignored_label=255, | |
) | |
y_true = { | |
'category_mask': [[ | |
[6, 6, 4, 6, 2, 5, 5], | |
[6, 8, 4, 3, 2, 5, 5], | |
]], | |
'instance_mask': [[ | |
[1, 1, 2, 5, 3, 0, 0], | |
[1, 6, 2, 0, 4, 0, 0], | |
]], | |
'image_info': tf.constant( | |
[[[2, 7], [2, 7], [1, 1], [0, 0]]], dtype=tf.float32 | |
), | |
} | |
y_pred = { | |
'category_mask': [[ | |
[6, 4, 4, 6, 2, 255, 255], | |
[6, 6, 4, 3, 255, 255, 7], | |
]], | |
'instance_mask': [[ | |
[1, 2, 2, 5, 0, 0, 0], | |
[1, 6, 2, 0, 0, 0, 0], | |
]], | |
} | |
panoptic_metrics.update_state(y_true, y_pred) | |
result = panoptic_metrics.result() | |
self.assertAllEqual( | |
result['valid_thing_classes'], | |
[False, False, True, False, True, False, True, False, True, False], | |
) | |
self.assertAllEqual( | |
result['valid_stuff_classes'], | |
[False, False, False, True, False, True, False, True, False, False], | |
) | |
self.assertAllClose( | |
result['sq_per_class'], | |
[0.0, 0.0, 0.0, 1.0, 0.666667, 0.0, 0.833333, 0.0, 0.0, 0.0], | |
atol=1e-4, | |
) | |
self.assertAllClose( | |
result['rq_per_class'], | |
[0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.8, 0.0, 0.0, 0.0], | |
atol=1e-4, | |
) | |
self.assertAllClose( | |
result['pq_per_class'], | |
[0.0, 0.0, 0.0, 1.0, 0.666667, 0.0, 0.666667, 0.0, 0.0, 0.0], | |
atol=1e-4, | |
) | |
if __name__ == '__main__': | |
absltest.main() | |