Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Anchor box and labeler definition.""" | |
import collections | |
import math | |
from typing import Dict, Optional, Tuple | |
# Import libraries | |
import tensorflow as tf, tf_keras | |
from official.vision.ops import anchor_generator | |
from official.vision.ops import box_matcher | |
from official.vision.ops import iou_similarity | |
from official.vision.ops import target_gather | |
from official.vision.utils.object_detection import balanced_positive_negative_sampler | |
from official.vision.utils.object_detection import box_list | |
from official.vision.utils.object_detection import faster_rcnn_box_coder | |
class Anchor(object): | |
"""Anchor class for anchor-based object detectors.""" | |
def __init__( | |
self, | |
min_level, | |
max_level, | |
num_scales, | |
aspect_ratios, | |
anchor_size, | |
image_size, | |
): | |
"""Constructs multi-scale anchors. | |
Args: | |
min_level: integer number of minimum level of the output feature pyramid. | |
max_level: integer number of maximum level of the output feature pyramid. | |
num_scales: integer number representing intermediate scales added on each | |
level. For instances, num_scales=2 adds one additional intermediate | |
anchor scales [2^0, 2^0.5] on each level. | |
aspect_ratios: list of float numbers representing the aspect ratio anchors | |
added on each level. The number indicates the ratio of width to height. | |
For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each | |
scale level. | |
anchor_size: float number representing the scale of size of the base | |
anchor to the feature stride 2^level. | |
image_size: a list of integer numbers or Tensors representing [height, | |
width] of the input image size.The image_size should be divided by the | |
largest feature stride 2^max_level. | |
""" | |
self.min_level = min_level | |
self.max_level = max_level | |
self.num_scales = num_scales | |
self.aspect_ratios = aspect_ratios | |
self.anchor_size = anchor_size | |
self.image_size = image_size | |
self.boxes = self._generate_boxes() | |
def _generate_boxes(self) -> tf.Tensor: | |
"""Generates multi-scale anchor boxes. | |
Returns: | |
a Tensor of shape [N, 4], representing anchor boxes of all levels | |
concatenated together. | |
""" | |
boxes_all = [] | |
for level in range(self.min_level, self.max_level + 1): | |
boxes_l = [] | |
feat_size = math.ceil(self.image_size[0] / 2**level) | |
stride = tf.cast(self.image_size[0] / feat_size, tf.float32) | |
for scale in range(self.num_scales): | |
for aspect_ratio in self.aspect_ratios: | |
intermidate_scale = 2 ** (scale / float(self.num_scales)) | |
base_anchor_size = self.anchor_size * stride * intermidate_scale | |
aspect_x = aspect_ratio**0.5 | |
aspect_y = aspect_ratio**-0.5 | |
half_anchor_size_x = base_anchor_size * aspect_x / 2.0 | |
half_anchor_size_y = base_anchor_size * aspect_y / 2.0 | |
x = tf.range(stride / 2, self.image_size[1], stride) | |
y = tf.range(stride / 2, self.image_size[0], stride) | |
xv, yv = tf.meshgrid(x, y) | |
xv = tf.cast(tf.reshape(xv, [-1]), dtype=tf.float32) | |
yv = tf.cast(tf.reshape(yv, [-1]), dtype=tf.float32) | |
# Tensor shape Nx4. | |
boxes = tf.stack( | |
[ | |
yv - half_anchor_size_y, | |
xv - half_anchor_size_x, | |
yv + half_anchor_size_y, | |
xv + half_anchor_size_x, | |
], | |
axis=1, | |
) | |
boxes_l.append(boxes) | |
# Concat anchors on the same level to tensor shape NxAx4. | |
boxes_l = tf.stack(boxes_l, axis=1) | |
boxes_l = tf.reshape(boxes_l, [-1, 4]) | |
boxes_all.append(boxes_l) | |
return tf.concat(boxes_all, axis=0) | |
def unpack_labels(self, labels: tf.Tensor) -> Dict[str, tf.Tensor]: | |
"""Unpacks an array of labels into multi-scales labels.""" | |
unpacked_labels = collections.OrderedDict() | |
count = 0 | |
for level in range(self.min_level, self.max_level + 1): | |
feat_size_y = tf.cast( | |
math.ceil(self.image_size[0] / 2**level), tf.int32 | |
) | |
feat_size_x = tf.cast( | |
math.ceil(self.image_size[1] / 2**level), tf.int32 | |
) | |
steps = feat_size_y * feat_size_x * self.anchors_per_location | |
unpacked_labels[str(level)] = tf.reshape( | |
labels[count : count + steps], [feat_size_y, feat_size_x, -1] | |
) | |
count += steps | |
return unpacked_labels | |
def anchors_per_location(self): | |
return self.num_scales * len(self.aspect_ratios) | |
def multilevel_boxes(self): | |
return self.unpack_labels(self.boxes) | |
class AnchorLabeler(object): | |
"""Labeler for dense object detector.""" | |
def __init__( | |
self, | |
match_threshold=0.5, | |
unmatched_threshold=0.5, | |
box_coder_weights=None, | |
): | |
"""Constructs anchor labeler to assign labels to anchors. | |
Args: | |
match_threshold: a float number between 0 and 1 representing the | |
lower-bound threshold to assign positive labels for anchors. An anchor | |
with a score over the threshold is labeled positive. | |
unmatched_threshold: a float number between 0 and 1 representing the | |
upper-bound threshold to assign negative labels for anchors. An anchor | |
with a score below the threshold is labeled negative. | |
box_coder_weights: Optional `list` of 4 positive floats to scale y, x, h, | |
and w when encoding box coordinates. If set to None, does not perform | |
scaling. For Faster RCNN, the open-source implementation recommends | |
using [10.0, 10.0, 5.0, 5.0]. | |
""" | |
self.similarity_calc = iou_similarity.IouSimilarity() | |
self.target_gather = target_gather.TargetGather() | |
self.matcher = box_matcher.BoxMatcher( | |
thresholds=[unmatched_threshold, match_threshold], | |
indicators=[-1, -2, 1], | |
force_match_for_each_col=True, | |
) | |
self.box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder( | |
scale_factors=box_coder_weights, | |
) | |
def label_anchors( | |
self, | |
anchor_boxes: Dict[str, tf.Tensor], | |
gt_boxes: tf.Tensor, | |
gt_labels: tf.Tensor, | |
gt_attributes: Optional[Dict[str, tf.Tensor]] = None, | |
gt_weights: Optional[tf.Tensor] = None, | |
) -> Tuple[ | |
Dict[str, tf.Tensor], | |
Dict[str, tf.Tensor], | |
Dict[str, Dict[str, tf.Tensor]], | |
tf.Tensor, | |
tf.Tensor, | |
]: | |
"""Labels anchors with ground truth inputs. | |
Args: | |
anchor_boxes: An ordered dictionary with keys [min_level, min_level+1, | |
..., max_level]. The values are tensor with shape [height_l, width_l, | |
num_anchors_per_location * 4]. The height_l and width_l represent the | |
dimension of the feature pyramid at l-th level. For each anchor box, the | |
tensor stores [y0, x0, y1, x1] for the four corners. | |
gt_boxes: A float tensor with shape [N, 4] representing ground-truth | |
boxes. For each row, it stores [y0, x0, y1, x1] for four corners of a | |
box. | |
gt_labels: A integer tensor with shape [N, 1] representing ground-truth | |
classes. | |
gt_attributes: If not None, a dict of (name, gt_attribute) pairs. | |
`gt_attribute` is a float tensor with shape [N, attribute_size] | |
representing ground-truth attributes. | |
gt_weights: If not None, a float tensor with shape [N] representing | |
ground-truth weights. | |
Returns: | |
cls_targets_dict: An ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, num_anchors_per_location]. The height_l and | |
width_l represent the dimension of class logits at l-th level. | |
box_targets_dict: An ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, num_anchors_per_location * 4]. The height_l | |
and width_l represent the dimension of bounding box regression output at | |
l-th level. | |
attribute_targets_dict: A dict with (name, attribute_targets) pairs. Each | |
`attribute_targets` represents an ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, num_anchors_per_location * attribute_size]. | |
The height_l and width_l represent the dimension of attribute prediction | |
output at l-th level. | |
cls_weights: A flattened Tensor with shape [num_anchors], that serves as | |
masking / sample weight for classification loss. Its value is 1.0 for | |
positive and negative matched anchors, and 0.0 for ignored anchors. | |
box_weights: A flattened Tensor with shape [num_anchors], that serves as | |
masking / sample weight for regression loss. Its value is 1.0 for | |
positive matched anchors, and 0.0 for negative and ignored anchors. | |
""" | |
flattened_anchor_boxes = [] | |
for anchors in anchor_boxes.values(): | |
flattened_anchor_boxes.append(tf.reshape(anchors, [-1, 4])) | |
flattened_anchor_boxes = tf.concat(flattened_anchor_boxes, axis=0) | |
similarity_matrix = self.similarity_calc(flattened_anchor_boxes, gt_boxes) | |
match_indices, match_indicators = self.matcher(similarity_matrix) | |
mask = tf.less_equal(match_indicators, 0) | |
cls_mask = tf.expand_dims(mask, -1) | |
cls_targets = self.target_gather(gt_labels, match_indices, cls_mask, -1) | |
box_mask = tf.tile(cls_mask, [1, 4]) | |
box_targets = self.target_gather(gt_boxes, match_indices, box_mask) | |
att_targets = {} | |
if gt_attributes: | |
for k, v in gt_attributes.items(): | |
att_size = v.get_shape().as_list()[-1] | |
att_mask = tf.tile(cls_mask, [1, att_size]) | |
att_targets[k] = self.target_gather(v, match_indices, att_mask, 0.0) | |
# When there is no ground truth labels, we force the weight to be 1 so that | |
# negative matched anchors get non-zero weights. | |
num_gt_labels = tf.shape(gt_labels)[0] | |
weights = tf.cond( | |
tf.greater(num_gt_labels, 0), | |
lambda: tf.ones_like(gt_labels, dtype=tf.float32)[..., -1], | |
lambda: tf.ones([1], dtype=tf.float32), | |
) | |
if gt_weights is not None: | |
weights = tf.cond( | |
tf.greater(num_gt_labels, 0), | |
lambda: tf.math.multiply(weights, gt_weights), | |
lambda: weights, | |
) | |
box_weights = self.target_gather(weights, match_indices, mask) | |
ignore_mask = tf.equal(match_indicators, -2) | |
cls_weights = self.target_gather(weights, match_indices, ignore_mask) | |
box_targets = box_list.BoxList(box_targets) | |
anchor_box = box_list.BoxList(flattened_anchor_boxes) | |
box_targets = self.box_coder.encode(box_targets, anchor_box) | |
# Unpacks labels into multi-level representations. | |
cls_targets = unpack_targets(cls_targets, anchor_boxes) | |
box_targets = unpack_targets(box_targets, anchor_boxes) | |
attribute_targets = { | |
k: unpack_targets(v, anchor_boxes) for k, v in att_targets.items() | |
} | |
return ( | |
cls_targets, | |
box_targets, | |
attribute_targets, | |
cls_weights, | |
box_weights, | |
) | |
class RpnAnchorLabeler(AnchorLabeler): | |
"""Labeler for Region Proposal Network.""" | |
def __init__( | |
self, | |
match_threshold=0.7, | |
unmatched_threshold=0.3, | |
rpn_batch_size_per_im=256, | |
rpn_fg_fraction=0.5, | |
): | |
AnchorLabeler.__init__( | |
self, | |
match_threshold=match_threshold, | |
unmatched_threshold=unmatched_threshold, | |
) | |
self._rpn_batch_size_per_im = rpn_batch_size_per_im | |
self._rpn_fg_fraction = rpn_fg_fraction | |
def _get_rpn_samples(self, match_results): | |
"""Computes anchor labels. | |
This function performs subsampling for foreground (fg) and background (bg) | |
anchors. | |
Args: | |
match_results: A integer tensor with shape [N] representing the matching | |
results of anchors. (1) match_results[i]>=0, meaning that column i is | |
matched with row match_results[i]. (2) match_results[i]=-1, meaning that | |
column i is not matched. (3) match_results[i]=-2, meaning that column i | |
is ignored. | |
Returns: | |
score_targets: a integer tensor with the a shape of [N]. | |
(1) score_targets[i]=1, the anchor is a positive sample. | |
(2) score_targets[i]=0, negative. (3) score_targets[i]=-1, the anchor is | |
don't care (ignore). | |
""" | |
sampler = ( | |
balanced_positive_negative_sampler.BalancedPositiveNegativeSampler( | |
positive_fraction=self._rpn_fg_fraction, is_static=False | |
) | |
) | |
# indicator includes both positive and negative labels. | |
# labels includes only positives labels. | |
# positives = indicator & labels. | |
# negatives = indicator & !labels. | |
# ignore = !indicator. | |
indicator = tf.greater(match_results, -2) | |
labels = tf.greater(match_results, -1) | |
samples = sampler.subsample(indicator, self._rpn_batch_size_per_im, labels) | |
positive_labels = tf.where( | |
tf.logical_and(samples, labels), | |
tf.constant(2, dtype=tf.int32, shape=match_results.shape), | |
tf.constant(0, dtype=tf.int32, shape=match_results.shape), | |
) | |
negative_labels = tf.where( | |
tf.logical_and(samples, tf.logical_not(labels)), | |
tf.constant(1, dtype=tf.int32, shape=match_results.shape), | |
tf.constant(0, dtype=tf.int32, shape=match_results.shape), | |
) | |
ignore_labels = tf.fill(match_results.shape, -1) | |
return ( | |
ignore_labels + positive_labels + negative_labels, | |
positive_labels, | |
negative_labels, | |
) | |
def label_anchors( # pytype: disable=signature-mismatch # overriding-parameter-count-checks | |
self, | |
anchor_boxes: Dict[str, tf.Tensor], | |
gt_boxes: tf.Tensor, | |
gt_labels: tf.Tensor, | |
) -> Tuple[Dict[str, tf.Tensor], Dict[str, tf.Tensor]]: | |
"""Labels anchors with ground truth inputs. | |
Args: | |
anchor_boxes: An ordered dictionary with keys [min_level, min_level+1, | |
..., max_level]. The values are tensor with shape [height_l, width_l, | |
num_anchors_per_location * 4]. The height_l and width_l represent the | |
dimension of the feature pyramid at l-th level. For each anchor box, the | |
tensor stores [y0, x0, y1, x1] for the four corners. | |
gt_boxes: A float tensor with shape [N, 4] representing ground-truth | |
boxes. For each row, it stores [y0, x0, y1, x1] for four corners of a | |
box. | |
gt_labels: A integer tensor with shape [N, 1] representing ground-truth | |
classes. | |
Returns: | |
score_targets_dict: An ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, num_anchors_per_location]. The height_l and | |
width_l represent the dimension of class logits at l-th level. | |
box_targets_dict: An ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with | |
shape [height_l, width_l, num_anchors_per_location * 4]. The height_l | |
and width_l represent the dimension of bounding box regression output at | |
l-th level. | |
""" | |
flattened_anchor_boxes = [] | |
for anchors in anchor_boxes.values(): | |
flattened_anchor_boxes.append(tf.reshape(anchors, [-1, 4])) | |
flattened_anchor_boxes = tf.concat(flattened_anchor_boxes, axis=0) | |
similarity_matrix = self.similarity_calc(flattened_anchor_boxes, gt_boxes) | |
match_indices, match_indicators = self.matcher(similarity_matrix) | |
box_mask = tf.tile( | |
tf.expand_dims(tf.less_equal(match_indicators, 0), -1), [1, 4] | |
) | |
box_targets = self.target_gather(gt_boxes, match_indices, box_mask) | |
box_targets_list = box_list.BoxList(box_targets) | |
anchor_box_list = box_list.BoxList(flattened_anchor_boxes) | |
box_targets = self.box_coder.encode(box_targets_list, anchor_box_list) | |
# Zero out the unmatched and ignored regression targets. | |
num_matches = match_indices.shape.as_list()[0] or tf.shape(match_indices)[0] | |
unmatched_ignored_box_targets = tf.zeros([num_matches, 4], dtype=tf.float32) | |
matched_anchors_mask = tf.greater_equal(match_indicators, 0) | |
# To broadcast matched_anchors_mask to the same shape as | |
# matched_reg_targets. | |
matched_anchors_mask = tf.tile( | |
tf.expand_dims(matched_anchors_mask, 1), [1, tf.shape(box_targets)[1]] | |
) | |
box_targets = tf.where( | |
matched_anchors_mask, box_targets, unmatched_ignored_box_targets | |
) | |
# score_targets contains the subsampled positive and negative anchors. | |
score_targets, _, _ = self._get_rpn_samples(match_indicators) | |
# Unpacks labels. | |
score_targets_dict = unpack_targets(score_targets, anchor_boxes) | |
box_targets_dict = unpack_targets(box_targets, anchor_boxes) | |
return score_targets_dict, box_targets_dict | |
def build_anchor_generator( | |
min_level, max_level, num_scales, aspect_ratios, anchor_size | |
): | |
"""Build anchor generator from levels.""" | |
anchor_sizes = collections.OrderedDict() | |
strides = collections.OrderedDict() | |
scales = [] | |
for scale in range(num_scales): | |
scales.append(2 ** (scale / float(num_scales))) | |
for level in range(min_level, max_level + 1): | |
stride = 2**level | |
strides[str(level)] = stride | |
anchor_sizes[str(level)] = anchor_size * stride | |
anchor_gen = anchor_generator.AnchorGenerator( | |
anchor_sizes=anchor_sizes, | |
scales=scales, | |
aspect_ratios=aspect_ratios, | |
strides=strides, | |
) | |
return anchor_gen | |
def unpack_targets( | |
targets: tf.Tensor, anchor_boxes_dict: Dict[str, tf.Tensor] | |
) -> Dict[str, tf.Tensor]: | |
"""Unpacks an array of labels into multi-scales labels. | |
Args: | |
targets: A tensor with shape [num_anchors, M] representing the packed | |
targets with M values stored for each anchor. | |
anchor_boxes_dict: An ordered dictionary with keys [min_level, min_level+1, | |
..., max_level]. The values are tensor with shape [height_l, width_l, | |
num_anchors_per_location * 4]. The height_l and width_l represent the | |
dimension of the feature pyramid at l-th level. For each anchor box, the | |
tensor stores [y0, x0, y1, x1] for the four corners. | |
Returns: | |
unpacked_targets: An ordered dictionary with keys | |
[min_level, min_level+1, ..., max_level]. The values are tensor with shape | |
[height_l, width_l, num_anchors_per_location * M]. The height_l and | |
width_l represent the dimension of the feature pyramid at l-th level. M is | |
the number of values stored for each anchor. | |
""" | |
unpacked_targets = collections.OrderedDict() | |
count = 0 | |
for level, anchor_boxes in anchor_boxes_dict.items(): | |
feat_size_shape = anchor_boxes.shape.as_list() | |
feat_size_y = feat_size_shape[0] | |
feat_size_x = feat_size_shape[1] | |
anchors_per_location = int(feat_size_shape[2] / 4) | |
steps = feat_size_y * feat_size_x * anchors_per_location | |
unpacked_targets[level] = tf.reshape( | |
targets[count : count + steps], [feat_size_y, feat_size_x, -1] | |
) | |
count += steps | |
return unpacked_targets | |