Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for Mobiledet.""" | |
import itertools | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.vision.modeling.backbones import mobiledet | |
class MobileDetTest(parameterized.TestCase, tf.test.TestCase): | |
def test_serialize_deserialize(self, model_id): | |
# Create a network object that sets all of its config options. | |
kwargs = dict( | |
model_id=model_id, | |
filter_size_scale=1.0, | |
use_sync_bn=False, | |
kernel_initializer='VarianceScaling', | |
kernel_regularizer=None, | |
bias_regularizer=None, | |
norm_momentum=0.99, | |
norm_epsilon=0.001, | |
min_depth=8, | |
divisible_by=8, | |
regularize_depthwise=False, | |
) | |
network = mobiledet.MobileDet(**kwargs) | |
expected_config = dict(kwargs) | |
self.assertEqual(network.get_config(), expected_config) | |
# Create another network object from the first object's config. | |
new_network = mobiledet.MobileDet.from_config(network.get_config()) | |
# Validate that the config can be forced to JSON. | |
_ = new_network.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(network.get_config(), new_network.get_config()) | |
def test_input_specs(self, input_dim, model_id): | |
"""Test different input feature dimensions.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
input_specs = tf_keras.layers.InputSpec(shape=[None, None, None, input_dim]) | |
network = mobiledet.MobileDet(model_id=model_id, input_specs=input_specs) | |
inputs = tf_keras.Input(shape=(128, 128, input_dim), batch_size=1) | |
_ = network(inputs) | |
def test_mobiledet_creation(self, model_id, input_size): | |
"""Test creation of MobileDet family models.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
mobiledet_layers = { | |
# The number of filters of layers having outputs been collected | |
# for filter_size_scale = 1.0 | |
'MobileDetCPU': [8, 16, 32, 72, 144], | |
'MobileDetDSP': [24, 32, 64, 144, 240], | |
'MobileDetEdgeTPU': [16, 16, 40, 96, 384], | |
'MobileDetGPU': [16, 32, 64, 128, 384], | |
} | |
network = mobiledet.MobileDet(model_id=model_id, | |
filter_size_scale=1.0) | |
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1) | |
endpoints = network(inputs) | |
for idx, num_filter in enumerate(mobiledet_layers[model_id]): | |
self.assertAllEqual( | |
[1, input_size / 2 ** (idx+1), input_size / 2 ** (idx+1), num_filter], | |
endpoints[str(idx+1)].shape.as_list()) | |