Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Contains definitions of Residual Networks with Deeplab modifications.""" | |
from typing import Callable, Optional, Tuple, List | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.modeling import hyperparams | |
from official.modeling import tf_utils | |
from official.vision.modeling.backbones import factory | |
from official.vision.modeling.layers import nn_blocks | |
from official.vision.modeling.layers import nn_layers | |
layers = tf_keras.layers | |
# Specifications for different ResNet variants. | |
# Each entry specifies block configurations of the particular ResNet variant. | |
# Each element in the block configuration is in the following format: | |
# (block_fn, num_filters, block_repeats) | |
RESNET_SPECS = { | |
50: [ | |
('bottleneck', 64, 3), | |
('bottleneck', 128, 4), | |
('bottleneck', 256, 6), | |
('bottleneck', 512, 3), | |
], | |
101: [ | |
('bottleneck', 64, 3), | |
('bottleneck', 128, 4), | |
('bottleneck', 256, 23), | |
('bottleneck', 512, 3), | |
], | |
152: [ | |
('bottleneck', 64, 3), | |
('bottleneck', 128, 8), | |
('bottleneck', 256, 36), | |
('bottleneck', 512, 3), | |
], | |
200: [ | |
('bottleneck', 64, 3), | |
('bottleneck', 128, 24), | |
('bottleneck', 256, 36), | |
('bottleneck', 512, 3), | |
], | |
} | |
class DilatedResNet(tf_keras.Model): | |
"""Creates a ResNet model with Deeplabv3 modifications. | |
This backbone is suitable for semantic segmentation. This implements | |
Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam. | |
Rethinking Atrous Convolution for Semantic Image Segmentation. | |
(https://arxiv.org/pdf/1706.05587) | |
""" | |
def __init__( | |
self, | |
model_id: int, | |
output_stride: int, | |
input_specs: tf_keras.layers.InputSpec = layers.InputSpec( | |
shape=[None, None, None, 3]), | |
stem_type: str = 'v0', | |
resnetd_shortcut: bool = False, | |
replace_stem_max_pool: bool = False, | |
se_ratio: Optional[float] = None, | |
init_stochastic_depth_rate: float = 0.0, | |
multigrid: Optional[Tuple[int]] = None, | |
last_stage_repeats: int = 1, | |
activation: str = 'relu', | |
use_sync_bn: bool = False, | |
norm_momentum: float = 0.99, | |
norm_epsilon: float = 0.001, | |
kernel_initializer: str = 'VarianceScaling', | |
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None, | |
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None, | |
**kwargs): | |
"""Initializes a ResNet model with DeepLab modification. | |
Args: | |
model_id: An `int` specifies depth of ResNet backbone model. | |
output_stride: An `int` of output stride, ratio of input to output | |
resolution. | |
input_specs: A `tf_keras.layers.InputSpec` of the input tensor. | |
stem_type: A `str` of stem type. Can be `v0` or `v1`. `v1` replaces 7x7 | |
conv by 3 3x3 convs. | |
resnetd_shortcut: A `bool` of whether to use ResNet-D shortcut in | |
downsampling blocks. | |
replace_stem_max_pool: A `bool` of whether to replace the max pool in stem | |
with a stride-2 conv, | |
se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer. | |
init_stochastic_depth_rate: A `float` of initial stochastic depth rate. | |
multigrid: A tuple of the same length as the number of blocks in the last | |
resnet stage. | |
last_stage_repeats: An `int` that specifies how many times last stage is | |
repeated. | |
activation: A `str` name of the activation function. | |
use_sync_bn: If True, use synchronized batch normalization. | |
norm_momentum: A `float` of normalization momentum for the moving average. | |
norm_epsilon: A `float` added to variance to avoid dividing by zero. | |
kernel_initializer: A str for kernel initializer of convolutional layers. | |
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for | |
Conv2D. Default to None. | |
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D. | |
Default to None. | |
**kwargs: Additional keyword arguments to be passed. | |
""" | |
self._model_id = model_id | |
self._output_stride = output_stride | |
self._input_specs = input_specs | |
self._use_sync_bn = use_sync_bn | |
self._activation = activation | |
self._norm_momentum = norm_momentum | |
self._norm_epsilon = norm_epsilon | |
self._norm = layers.BatchNormalization | |
self._kernel_initializer = kernel_initializer | |
self._kernel_regularizer = kernel_regularizer | |
self._bias_regularizer = bias_regularizer | |
self._stem_type = stem_type | |
self._resnetd_shortcut = resnetd_shortcut | |
self._replace_stem_max_pool = replace_stem_max_pool | |
self._se_ratio = se_ratio | |
self._init_stochastic_depth_rate = init_stochastic_depth_rate | |
if tf_keras.backend.image_data_format() == 'channels_last': | |
bn_axis = -1 | |
else: | |
bn_axis = 1 | |
# Build ResNet. | |
inputs = tf_keras.Input(shape=input_specs.shape[1:]) | |
if stem_type == 'v0': | |
x = layers.Conv2D( | |
filters=64, | |
kernel_size=7, | |
strides=2, | |
use_bias=False, | |
padding='same', | |
kernel_initializer=self._kernel_initializer, | |
kernel_regularizer=self._kernel_regularizer, | |
bias_regularizer=self._bias_regularizer)( | |
inputs) | |
x = self._norm( | |
axis=bn_axis, | |
momentum=norm_momentum, | |
epsilon=norm_epsilon, | |
synchronized=use_sync_bn)( | |
x) | |
x = tf_utils.get_activation(activation)(x) | |
elif stem_type == 'v1': | |
x = layers.Conv2D( | |
filters=64, | |
kernel_size=3, | |
strides=2, | |
use_bias=False, | |
padding='same', | |
kernel_initializer=self._kernel_initializer, | |
kernel_regularizer=self._kernel_regularizer, | |
bias_regularizer=self._bias_regularizer)( | |
inputs) | |
x = self._norm( | |
axis=bn_axis, | |
momentum=norm_momentum, | |
epsilon=norm_epsilon, | |
synchronized=use_sync_bn)( | |
x) | |
x = tf_utils.get_activation(activation)(x) | |
x = layers.Conv2D( | |
filters=64, | |
kernel_size=3, | |
strides=1, | |
use_bias=False, | |
padding='same', | |
kernel_initializer=self._kernel_initializer, | |
kernel_regularizer=self._kernel_regularizer, | |
bias_regularizer=self._bias_regularizer)( | |
x) | |
x = self._norm( | |
axis=bn_axis, | |
momentum=norm_momentum, | |
epsilon=norm_epsilon, | |
synchronized=use_sync_bn)( | |
x) | |
x = tf_utils.get_activation(activation)(x) | |
x = layers.Conv2D( | |
filters=128, | |
kernel_size=3, | |
strides=1, | |
use_bias=False, | |
padding='same', | |
kernel_initializer=self._kernel_initializer, | |
kernel_regularizer=self._kernel_regularizer, | |
bias_regularizer=self._bias_regularizer)( | |
x) | |
x = self._norm( | |
axis=bn_axis, | |
momentum=norm_momentum, | |
epsilon=norm_epsilon, | |
synchronized=use_sync_bn)( | |
x) | |
x = tf_utils.get_activation(activation)(x) | |
else: | |
raise ValueError('Stem type {} not supported.'.format(stem_type)) | |
if replace_stem_max_pool: | |
x = layers.Conv2D( | |
filters=64, | |
kernel_size=3, | |
strides=2, | |
use_bias=False, | |
padding='same', | |
kernel_initializer=self._kernel_initializer, | |
kernel_regularizer=self._kernel_regularizer, | |
bias_regularizer=self._bias_regularizer)( | |
x) | |
x = self._norm( | |
axis=bn_axis, | |
momentum=norm_momentum, | |
epsilon=norm_epsilon, | |
synchronized=use_sync_bn)( | |
x) | |
x = tf_utils.get_activation(activation, use_keras_layer=True)(x) | |
else: | |
x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x) | |
normal_resnet_stage = int(np.math.log2(self._output_stride)) - 2 | |
endpoints = {} | |
for i in range(normal_resnet_stage + 1): | |
spec = RESNET_SPECS[model_id][i] | |
if spec[0] == 'bottleneck': | |
block_fn = nn_blocks.BottleneckBlock | |
else: | |
raise ValueError('Block fn `{}` is not supported.'.format(spec[0])) | |
x = self._block_group( | |
inputs=x, | |
filters=spec[1], | |
strides=(1 if i == 0 else 2), | |
dilation_rate=1, | |
block_fn=block_fn, | |
block_repeats=spec[2], | |
stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate( | |
self._init_stochastic_depth_rate, i + 2, 4 + last_stage_repeats), | |
name='block_group_l{}'.format(i + 2)) | |
endpoints[str(i + 2)] = x | |
dilation_rate = 2 | |
for i in range(normal_resnet_stage + 1, 3 + last_stage_repeats): | |
spec = RESNET_SPECS[model_id][i] if i < 3 else RESNET_SPECS[model_id][-1] | |
if spec[0] == 'bottleneck': | |
block_fn = nn_blocks.BottleneckBlock | |
else: | |
raise ValueError('Block fn `{}` is not supported.'.format(spec[0])) | |
x = self._block_group( | |
inputs=x, | |
filters=spec[1], | |
strides=1, | |
dilation_rate=dilation_rate, | |
block_fn=block_fn, | |
block_repeats=spec[2], | |
stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate( | |
self._init_stochastic_depth_rate, i + 2, 4 + last_stage_repeats), | |
multigrid=multigrid if i >= 3 else None, | |
name='block_group_l{}'.format(i + 2)) | |
dilation_rate *= 2 | |
endpoints[str(normal_resnet_stage + 2)] = x | |
self._output_specs = {l: endpoints[l].get_shape() for l in endpoints} | |
super(DilatedResNet, self).__init__( | |
inputs=inputs, outputs=endpoints, **kwargs) | |
def _block_group(self, | |
inputs: tf.Tensor, | |
filters: int, | |
strides: int, | |
dilation_rate: int, | |
block_fn: Callable[..., tf_keras.layers.Layer], | |
block_repeats: int = 1, | |
stochastic_depth_drop_rate: float = 0.0, | |
multigrid: Optional[List[int]] = None, | |
name: str = 'block_group'): | |
"""Creates one group of blocks for the ResNet model. | |
Deeplab applies strides at the last block. | |
Args: | |
inputs: A `tf.Tensor` of size `[batch, channels, height, width]`. | |
filters: An `int` off number of filters for the first convolution of the | |
layer. | |
strides: An `int` of stride to use for the first convolution of the layer. | |
If greater than 1, this layer will downsample the input. | |
dilation_rate: An `int` of diluted convolution rates. | |
block_fn: Either `nn_blocks.ResidualBlock` or `nn_blocks.BottleneckBlock`. | |
block_repeats: An `int` of number of blocks contained in the layer. | |
stochastic_depth_drop_rate: A `float` of drop rate of the current block | |
group. | |
multigrid: A list of `int` or None. If specified, dilation rates for each | |
block is scaled up by its corresponding factor in the multigrid. | |
name: A `str` name for the block. | |
Returns: | |
The output `tf.Tensor` of the block layer. | |
""" | |
if multigrid is not None and len(multigrid) != block_repeats: | |
raise ValueError('multigrid has to match number of block_repeats') | |
if multigrid is None: | |
multigrid = [1] * block_repeats | |
# TODO(arashwan): move striding at the of the block. | |
x = block_fn( | |
filters=filters, | |
strides=strides, | |
dilation_rate=dilation_rate * multigrid[0], | |
use_projection=True, | |
stochastic_depth_drop_rate=stochastic_depth_drop_rate, | |
se_ratio=self._se_ratio, | |
resnetd_shortcut=self._resnetd_shortcut, | |
kernel_initializer=self._kernel_initializer, | |
kernel_regularizer=self._kernel_regularizer, | |
bias_regularizer=self._bias_regularizer, | |
activation=self._activation, | |
use_sync_bn=self._use_sync_bn, | |
norm_momentum=self._norm_momentum, | |
norm_epsilon=self._norm_epsilon)( | |
inputs) | |
for i in range(1, block_repeats): | |
x = block_fn( | |
filters=filters, | |
strides=1, | |
dilation_rate=dilation_rate * multigrid[i], | |
use_projection=False, | |
stochastic_depth_drop_rate=stochastic_depth_drop_rate, | |
resnetd_shortcut=self._resnetd_shortcut, | |
se_ratio=self._se_ratio, | |
kernel_initializer=self._kernel_initializer, | |
kernel_regularizer=self._kernel_regularizer, | |
bias_regularizer=self._bias_regularizer, | |
activation=self._activation, | |
use_sync_bn=self._use_sync_bn, | |
norm_momentum=self._norm_momentum, | |
norm_epsilon=self._norm_epsilon)( | |
x) | |
return tf.identity(x, name=name) | |
def get_config(self): | |
config_dict = { | |
'model_id': self._model_id, | |
'output_stride': self._output_stride, | |
'stem_type': self._stem_type, | |
'resnetd_shortcut': self._resnetd_shortcut, | |
'replace_stem_max_pool': self._replace_stem_max_pool, | |
'se_ratio': self._se_ratio, | |
'init_stochastic_depth_rate': self._init_stochastic_depth_rate, | |
'activation': self._activation, | |
'use_sync_bn': self._use_sync_bn, | |
'norm_momentum': self._norm_momentum, | |
'norm_epsilon': self._norm_epsilon, | |
'kernel_initializer': self._kernel_initializer, | |
'kernel_regularizer': self._kernel_regularizer, | |
'bias_regularizer': self._bias_regularizer, | |
} | |
return config_dict | |
def from_config(cls, config, custom_objects=None): | |
return cls(**config) | |
def output_specs(self): | |
"""A dict of {level: TensorShape} pairs for the model output.""" | |
return self._output_specs | |
def build_dilated_resnet( | |
input_specs: tf_keras.layers.InputSpec, | |
backbone_config: hyperparams.Config, | |
norm_activation_config: hyperparams.Config, | |
l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model: # pytype: disable=annotation-type-mismatch # typed-keras | |
"""Builds ResNet backbone from a config.""" | |
backbone_type = backbone_config.type | |
backbone_cfg = backbone_config.get() | |
assert backbone_type == 'dilated_resnet', (f'Inconsistent backbone type ' | |
f'{backbone_type}') | |
return DilatedResNet( | |
model_id=backbone_cfg.model_id, | |
output_stride=backbone_cfg.output_stride, | |
input_specs=input_specs, | |
stem_type=backbone_cfg.stem_type, | |
resnetd_shortcut=backbone_cfg.resnetd_shortcut, | |
replace_stem_max_pool=backbone_cfg.replace_stem_max_pool, | |
se_ratio=backbone_cfg.se_ratio, | |
init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate, | |
multigrid=backbone_cfg.multigrid, | |
last_stage_repeats=backbone_cfg.last_stage_repeats, | |
activation=norm_activation_config.activation, | |
use_sync_bn=norm_activation_config.use_sync_bn, | |
norm_momentum=norm_activation_config.norm_momentum, | |
norm_epsilon=norm_activation_config.norm_epsilon, | |
kernel_regularizer=l2_regularizer) | |