Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Contains definitions of RevNet.""" | |
from typing import Any, Callable, Dict, Optional | |
# Import libraries | |
import tensorflow as tf, tf_keras | |
from official.modeling import hyperparams | |
from official.modeling import tf_utils | |
from official.vision.modeling.backbones import factory | |
from official.vision.modeling.layers import nn_blocks | |
# Specifications for different RevNet variants. | |
# Each entry specifies block configurations of the particular RevNet variant. | |
# Each element in the block configuration is in the following format: | |
# (block_fn, num_filters, block_repeats) | |
REVNET_SPECS = { | |
38: [ | |
('residual', 32, 3), | |
('residual', 64, 3), | |
('residual', 112, 3), | |
], | |
56: [ | |
('bottleneck', 128, 2), | |
('bottleneck', 256, 2), | |
('bottleneck', 512, 3), | |
('bottleneck', 832, 2), | |
], | |
104: [ | |
('bottleneck', 128, 2), | |
('bottleneck', 256, 2), | |
('bottleneck', 512, 11), | |
('bottleneck', 832, 2), | |
], | |
} | |
class RevNet(tf_keras.Model): | |
"""Creates a Reversible ResNet (RevNet) family model. | |
This implements: | |
Aidan N. Gomez, Mengye Ren, Raquel Urtasun, Roger B. Grosse. | |
The Reversible Residual Network: Backpropagation Without Storing | |
Activations. | |
(https://arxiv.org/pdf/1707.04585.pdf) | |
""" | |
def __init__( | |
self, | |
model_id: int, | |
input_specs: tf_keras.layers.InputSpec = tf_keras.layers.InputSpec( | |
shape=[None, None, None, 3]), | |
activation: str = 'relu', | |
use_sync_bn: bool = False, | |
norm_momentum: float = 0.99, | |
norm_epsilon: float = 0.001, | |
kernel_initializer: str = 'VarianceScaling', | |
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None, | |
**kwargs): | |
"""Initializes a RevNet model. | |
Args: | |
model_id: An `int` of depth/id of ResNet backbone model. | |
input_specs: A `tf_keras.layers.InputSpec` of the input tensor. | |
activation: A `str` name of the activation function. | |
use_sync_bn: If True, use synchronized batch normalization. | |
norm_momentum: A `float` of normalization momentum for the moving average. | |
norm_epsilon: A `float` added to variance to avoid dividing by zero. | |
kernel_initializer: A str for kernel initializer of convolutional layers. | |
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for | |
Conv2D. Default to None. | |
**kwargs: Additional keyword arguments to be passed. | |
""" | |
self._model_id = model_id | |
self._input_specs = input_specs | |
self._use_sync_bn = use_sync_bn | |
self._activation = activation | |
self._norm_momentum = norm_momentum | |
self._norm_epsilon = norm_epsilon | |
self._kernel_initializer = kernel_initializer | |
self._kernel_regularizer = kernel_regularizer | |
self._norm = tf_keras.layers.BatchNormalization | |
axis = -1 if tf_keras.backend.image_data_format() == 'channels_last' else 1 | |
# Build RevNet. | |
inputs = tf_keras.Input(shape=input_specs.shape[1:]) | |
x = tf_keras.layers.Conv2D( | |
filters=REVNET_SPECS[model_id][0][1], | |
kernel_size=7, strides=2, use_bias=False, padding='same', | |
kernel_initializer=self._kernel_initializer, | |
kernel_regularizer=self._kernel_regularizer)(inputs) | |
x = self._norm( | |
axis=axis, | |
momentum=norm_momentum, | |
epsilon=norm_epsilon, | |
synchronized=use_sync_bn)(x) | |
x = tf_utils.get_activation(activation)(x) | |
x = tf_keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x) | |
endpoints = {} | |
for i, spec in enumerate(REVNET_SPECS[model_id]): | |
if spec[0] == 'residual': | |
inner_block_fn = nn_blocks.ResidualInner | |
elif spec[0] == 'bottleneck': | |
inner_block_fn = nn_blocks.BottleneckResidualInner | |
else: | |
raise ValueError('Block fn `{}` is not supported.'.format(spec[0])) | |
if spec[1] % 2 != 0: | |
raise ValueError('Number of output filters must be even to ensure ' | |
'splitting in channel dimension for reversible blocks') | |
x = self._block_group( | |
inputs=x, | |
filters=spec[1], | |
strides=(1 if i == 0 else 2), | |
inner_block_fn=inner_block_fn, | |
block_repeats=spec[2], | |
batch_norm_first=(i != 0), # Only skip on first block | |
name='revblock_group_{}'.format(i + 2)) | |
endpoints[str(i + 2)] = x | |
self._output_specs = {l: endpoints[l].get_shape() for l in endpoints} | |
super(RevNet, self).__init__(inputs=inputs, outputs=endpoints, **kwargs) | |
def _block_group(self, | |
inputs: tf.Tensor, | |
filters: int, | |
strides: int, | |
inner_block_fn: Callable[..., tf_keras.layers.Layer], | |
block_repeats: int, | |
batch_norm_first: bool, | |
name: str = 'revblock_group') -> tf.Tensor: | |
"""Creates one reversible block for RevNet model. | |
Args: | |
inputs: A `tf.Tensor` of size `[batch, channels, height, width]`. | |
filters: An `int` number of filters for the first convolution of the | |
layer. | |
strides: An `int` stride to use for the first convolution of the layer. If | |
greater than 1, this block group will downsample the input. | |
inner_block_fn: Either `nn_blocks.ResidualInner` or | |
`nn_blocks.BottleneckResidualInner`. | |
block_repeats: An `int` number of blocks contained in this block group. | |
batch_norm_first: A `bool` that specifies whether to apply | |
BatchNormalization and activation layer before feeding into convolution | |
layers. | |
name: A `str` name for the block. | |
Returns: | |
The output `tf.Tensor` of the block layer. | |
""" | |
x = inputs | |
for i in range(block_repeats): | |
is_first_block = i == 0 | |
# Only first residual layer in block gets downsampled | |
curr_strides = strides if is_first_block else 1 | |
f = inner_block_fn( | |
filters=filters // 2, | |
strides=curr_strides, | |
batch_norm_first=batch_norm_first and is_first_block, | |
kernel_regularizer=self._kernel_regularizer) | |
g = inner_block_fn( | |
filters=filters // 2, | |
strides=1, | |
batch_norm_first=batch_norm_first and is_first_block, | |
kernel_regularizer=self._kernel_regularizer) | |
x = nn_blocks.ReversibleLayer(f, g)(x) | |
return tf.identity(x, name=name) | |
def get_config(self) -> Dict[str, Any]: | |
config_dict = { | |
'model_id': self._model_id, | |
'activation': self._activation, | |
'use_sync_bn': self._use_sync_bn, | |
'norm_momentum': self._norm_momentum, | |
'norm_epsilon': self._norm_epsilon, | |
'kernel_initializer': self._kernel_initializer, | |
'kernel_regularizer': self._kernel_regularizer, | |
} | |
return config_dict | |
def from_config(cls, | |
config: Dict[str, Any], | |
custom_objects: Optional[Any] = None) -> tf_keras.Model: | |
return cls(**config) | |
def output_specs(self) -> Dict[int, tf.TensorShape]: | |
"""A dict of {level: TensorShape} pairs for the model output.""" | |
return self._output_specs # pytype: disable=bad-return-type # trace-all-classes | |
def build_revnet( | |
input_specs: tf_keras.layers.InputSpec, | |
backbone_config: hyperparams.Config, | |
norm_activation_config: hyperparams.Config, | |
l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model: # pytype: disable=annotation-type-mismatch # typed-keras | |
"""Builds RevNet backbone from a config.""" | |
backbone_type = backbone_config.type | |
backbone_cfg = backbone_config.get() | |
assert backbone_type == 'revnet', (f'Inconsistent backbone type ' | |
f'{backbone_type}') | |
return RevNet( | |
model_id=backbone_cfg.model_id, | |
input_specs=input_specs, | |
activation=norm_activation_config.activation, | |
use_sync_bn=norm_activation_config.use_sync_bn, | |
norm_momentum=norm_activation_config.norm_momentum, | |
norm_epsilon=norm_activation_config.norm_epsilon, | |
kernel_regularizer=l2_regularizer) | |