deanna-emery's picture
updates
93528c6
raw
history blame
21.2 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of SpineNet Networks."""
import math
from typing import Any, List, Optional, Tuple
# Import libraries
from absl import logging
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers
from official.vision.ops import spatial_transform_ops
layers = tf_keras.layers
FILTER_SIZE_MAP = {
1: 32,
2: 64,
3: 128,
4: 256,
5: 256,
6: 256,
7: 256,
}
# The fixed SpineNet architecture discovered by NAS.
# Each element represents a specification of a building block:
# (block_level, block_fn, (input_offset0, input_offset1), is_output).
SPINENET_BLOCK_SPECS = [
(2, 'bottleneck', (0, 1), False),
(4, 'residual', (0, 1), False),
(3, 'bottleneck', (2, 3), False),
(4, 'bottleneck', (2, 4), False),
(6, 'residual', (3, 5), False),
(4, 'bottleneck', (3, 5), False),
(5, 'residual', (6, 7), False),
(7, 'residual', (6, 8), False),
(5, 'bottleneck', (8, 9), False),
(5, 'bottleneck', (8, 10), False),
(4, 'bottleneck', (5, 10), True),
(3, 'bottleneck', (4, 10), True),
(5, 'bottleneck', (7, 12), True),
(7, 'bottleneck', (5, 14), True),
(6, 'bottleneck', (12, 14), True),
(2, 'bottleneck', (2, 13), True),
]
SCALING_MAP = {
'49S': {
'endpoints_num_filters': 128,
'filter_size_scale': 0.65,
'resample_alpha': 0.5,
'block_repeats': 1,
},
'49': {
'endpoints_num_filters': 256,
'filter_size_scale': 1.0,
'resample_alpha': 0.5,
'block_repeats': 1,
},
'96': {
'endpoints_num_filters': 256,
'filter_size_scale': 1.0,
'resample_alpha': 0.5,
'block_repeats': 2,
},
'143': {
'endpoints_num_filters': 256,
'filter_size_scale': 1.0,
'resample_alpha': 1.0,
'block_repeats': 3,
},
# SpineNet-143 with 1.3x filter_size_scale.
'143L': {
'endpoints_num_filters': 256,
'filter_size_scale': 1.3,
'resample_alpha': 1.0,
'block_repeats': 3,
},
'190': {
'endpoints_num_filters': 512,
'filter_size_scale': 1.3,
'resample_alpha': 1.0,
'block_repeats': 4,
},
}
class BlockSpec(object):
"""A container class that specifies the block configuration for SpineNet."""
def __init__(self, level: int, block_fn: str, input_offsets: Tuple[int, int],
is_output: bool):
self.level = level
self.block_fn = block_fn
self.input_offsets = input_offsets
self.is_output = is_output
def build_block_specs(
block_specs: Optional[List[Tuple[Any, ...]]] = None) -> List[BlockSpec]:
"""Builds the list of BlockSpec objects for SpineNet."""
if not block_specs:
block_specs = SPINENET_BLOCK_SPECS
logging.info('Building SpineNet block specs: %s', block_specs)
return [BlockSpec(*b) for b in block_specs]
@tf_keras.utils.register_keras_serializable(package='Vision')
class SpineNet(tf_keras.Model):
"""Creates a SpineNet family model.
This implements:
Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi, Mingxing Tan,
Yin Cui, Quoc V. Le, Xiaodan Song.
SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization.
(https://arxiv.org/abs/1912.05027)
"""
def __init__(
self,
input_specs: tf_keras.layers.InputSpec = tf_keras.layers.InputSpec(
shape=[None, None, None, 3]),
min_level: int = 3,
max_level: int = 7,
block_specs: Optional[List[BlockSpec]] = None,
endpoints_num_filters: int = 256,
resample_alpha: float = 0.5,
block_repeats: int = 1,
filter_size_scale: float = 1.0,
init_stochastic_depth_rate: float = 0.0,
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
activation: str = 'relu',
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
**kwargs):
"""Initializes a SpineNet model.
Args:
input_specs: A `tf_keras.layers.InputSpec` of the input tensor.
min_level: An `int` of min level for output mutiscale features.
max_level: An `int` of max level for output mutiscale features.
block_specs: A list of block specifications for the SpineNet model
discovered by NAS.
endpoints_num_filters: An `int` of feature dimension for the output
endpoints.
resample_alpha: A `float` of resampling factor in cross-scale connections.
block_repeats: An `int` of number of blocks contained in the layer.
filter_size_scale: A `float` of multiplier for the filters (number of
channels) for all convolution ops. The value must be greater than zero.
Typical usage will be to set this value in (0, 1) to reduce the number
of parameters or computation cost of the model.
init_stochastic_depth_rate: A `float` of initial stochastic depth rate.
kernel_initializer: A str for kernel initializer of convolutional layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default to None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
Default to None.
activation: A `str` name of the activation function.
use_sync_bn: If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A small `float` added to variance to avoid dividing by zero.
**kwargs: Additional keyword arguments to be passed.
"""
self._input_specs = input_specs
self._min_level = min_level
self._max_level = max_level
self._block_specs = (
build_block_specs() if block_specs is None else block_specs
)
self._endpoints_num_filters = endpoints_num_filters
self._resample_alpha = resample_alpha
self._block_repeats = block_repeats
self._filter_size_scale = filter_size_scale
self._init_stochastic_depth_rate = init_stochastic_depth_rate
self._kernel_initializer = kernel_initializer
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
self._activation = activation
self._use_sync_bn = use_sync_bn
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._init_block_fn = 'bottleneck'
self._num_init_blocks = 2
self._set_activation_fn(activation)
self._norm = layers.BatchNormalization
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
# Build SpineNet.
inputs = tf_keras.Input(shape=input_specs.shape[1:])
net = self._build_stem(inputs=inputs)
input_width = input_specs.shape[2]
if input_width is None:
max_stride = max(map(lambda b: b.level, self._block_specs))
input_width = 2 ** max_stride
net = self._build_scale_permuted_network(net=net, input_width=input_width)
endpoints = self._build_endpoints(net=net)
self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
super(SpineNet, self).__init__(inputs=inputs, outputs=endpoints)
def _set_activation_fn(self, activation):
if activation == 'relu':
self._activation_fn = tf.nn.relu
elif activation == 'swish':
self._activation_fn = tf.nn.swish
else:
raise ValueError('Activation {} not implemented.'.format(activation))
def _block_group(self,
inputs: tf.Tensor,
filters: int,
strides: int,
block_fn_cand: str,
block_repeats: int = 1,
stochastic_depth_drop_rate: Optional[float] = None,
name: str = 'block_group'):
"""Creates one group of blocks for the SpineNet model."""
block_fn_candidates = {
'bottleneck': nn_blocks.BottleneckBlock,
'residual': nn_blocks.ResidualBlock,
}
block_fn = block_fn_candidates[block_fn_cand]
_, _, _, num_filters = inputs.get_shape().as_list()
if block_fn_cand == 'bottleneck':
use_projection = not (num_filters == (filters * 4) and strides == 1)
else:
use_projection = not (num_filters == filters and strides == 1)
x = block_fn(
filters=filters,
strides=strides,
use_projection=use_projection,
stochastic_depth_drop_rate=stochastic_depth_drop_rate,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activation=self._activation,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon)(
inputs)
for _ in range(1, block_repeats):
x = block_fn(
filters=filters,
strides=1,
use_projection=False,
stochastic_depth_drop_rate=stochastic_depth_drop_rate,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activation=self._activation,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon)(
x)
return tf.identity(x, name=name)
def _build_stem(self, inputs):
"""Builds SpineNet stem."""
x = layers.Conv2D(
filters=64,
kernel_size=7,
strides=2,
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
inputs)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)(
x)
x = tf_utils.get_activation(self._activation_fn)(x)
x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)
net = []
# Build the initial level 2 blocks.
for i in range(self._num_init_blocks):
x = self._block_group(
inputs=x,
filters=int(FILTER_SIZE_MAP[2] * self._filter_size_scale),
strides=1,
block_fn_cand=self._init_block_fn,
block_repeats=self._block_repeats,
name='stem_block_{}'.format(i + 1))
net.append(x)
return net
def _build_scale_permuted_network(self,
net,
input_width,
weighted_fusion=False):
"""Builds scale-permuted network."""
net_sizes = [int(math.ceil(input_width / 2**2))] * len(net)
net_block_fns = [self._init_block_fn] * len(net)
num_outgoing_connections = [0] * len(net)
endpoints = {}
for i, block_spec in enumerate(self._block_specs):
# Find out specs for the target block.
target_width = int(math.ceil(input_width / 2**block_spec.level))
target_num_filters = int(FILTER_SIZE_MAP[block_spec.level] *
self._filter_size_scale)
target_block_fn = block_spec.block_fn
# Resample then merge input0 and input1.
parents = []
input0 = block_spec.input_offsets[0]
input1 = block_spec.input_offsets[1]
x0 = self._resample_with_alpha(
inputs=net[input0],
input_width=net_sizes[input0],
input_block_fn=net_block_fns[input0],
target_width=target_width,
target_num_filters=target_num_filters,
target_block_fn=target_block_fn,
alpha=self._resample_alpha)
parents.append(x0)
num_outgoing_connections[input0] += 1
x1 = self._resample_with_alpha(
inputs=net[input1],
input_width=net_sizes[input1],
input_block_fn=net_block_fns[input1],
target_width=target_width,
target_num_filters=target_num_filters,
target_block_fn=target_block_fn,
alpha=self._resample_alpha)
parents.append(x1)
num_outgoing_connections[input1] += 1
# Merge 0 outdegree blocks to the output block.
if block_spec.is_output:
for j, (j_feat,
j_connections) in enumerate(zip(net, num_outgoing_connections)):
if j_connections == 0 and (j_feat.shape[2] == target_width and
j_feat.shape[3] == x0.shape[3]):
parents.append(j_feat)
num_outgoing_connections[j] += 1
# pylint: disable=g-direct-tensorflow-import
if weighted_fusion:
dtype = parents[0].dtype
parent_weights = [
tf.nn.relu(tf.cast(tf.Variable(1.0, name='block{}_fusion{}'.format(
i, j)), dtype=dtype)) for j in range(len(parents))]
weights_sum = tf.add_n(parent_weights)
parents = [
parents[i] * parent_weights[i] / (weights_sum + 0.0001)
for i in range(len(parents))
]
# Fuse all parent nodes then build a new block.
x = tf_utils.get_activation(self._activation_fn)(tf.add_n(parents))
x = self._block_group(
inputs=x,
filters=target_num_filters,
strides=1,
block_fn_cand=target_block_fn,
block_repeats=self._block_repeats,
stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
self._init_stochastic_depth_rate, i + 1, len(self._block_specs)),
name='scale_permuted_block_{}'.format(i + 1))
net.append(x)
net_sizes.append(target_width)
net_block_fns.append(target_block_fn)
num_outgoing_connections.append(0)
# Save output feats.
if block_spec.is_output:
if block_spec.level in endpoints:
raise ValueError('Duplicate feats found for output level {}.'.format(
block_spec.level))
if (block_spec.level < self._min_level or
block_spec.level > self._max_level):
logging.warning(
'SpineNet output level %s out of range [min_level, max_level] = '
'[%s, %s] will not be used for further processing.',
block_spec.level, self._min_level, self._max_level)
endpoints[str(block_spec.level)] = x
return endpoints
def _build_endpoints(self, net):
"""Matches filter size for endpoints before sharing conv layers."""
endpoints = {}
for level in range(self._min_level, self._max_level + 1):
x = layers.Conv2D(
filters=self._endpoints_num_filters,
kernel_size=1,
strides=1,
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
net[str(level)])
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)(
x)
x = tf_utils.get_activation(self._activation_fn)(x)
endpoints[str(level)] = x
return endpoints
def _resample_with_alpha(self,
inputs,
input_width,
input_block_fn,
target_width,
target_num_filters,
target_block_fn,
alpha=0.5):
"""Matches resolution and feature dimension."""
_, _, _, input_num_filters = inputs.get_shape().as_list()
if input_block_fn == 'bottleneck':
input_num_filters /= 4
new_num_filters = int(input_num_filters * alpha)
x = layers.Conv2D(
filters=new_num_filters,
kernel_size=1,
strides=1,
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
inputs)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)(
x)
x = tf_utils.get_activation(self._activation_fn)(x)
# Spatial resampling.
if input_width > target_width:
x = layers.Conv2D(
filters=new_num_filters,
kernel_size=3,
strides=2,
padding='SAME',
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
x)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)(
x)
x = tf_utils.get_activation(self._activation_fn)(x)
input_width /= 2
while input_width > target_width:
x = layers.MaxPool2D(pool_size=3, strides=2, padding='SAME')(x)
input_width /= 2
elif input_width < target_width:
scale = target_width // input_width
x = spatial_transform_ops.nearest_upsampling(x, scale=scale)
# Last 1x1 conv to match filter size.
if target_block_fn == 'bottleneck':
target_num_filters *= 4
x = layers.Conv2D(
filters=target_num_filters,
kernel_size=1,
strides=1,
use_bias=False,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
x)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)(
x)
return x
def get_config(self):
config_dict = {
'min_level': self._min_level,
'max_level': self._max_level,
'endpoints_num_filters': self._endpoints_num_filters,
'resample_alpha': self._resample_alpha,
'block_repeats': self._block_repeats,
'filter_size_scale': self._filter_size_scale,
'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
'activation': self._activation,
'use_sync_bn': self._use_sync_bn,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon
}
return config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def output_specs(self):
"""A dict of {level: TensorShape} pairs for the model output."""
return self._output_specs
@factory.register_backbone_builder('spinenet')
def build_spinenet(
input_specs: tf_keras.layers.InputSpec,
backbone_config: hyperparams.Config,
norm_activation_config: hyperparams.Config,
l2_regularizer: tf_keras.regularizers.Regularizer = None) -> tf_keras.Model:
"""Builds SpineNet backbone from a config."""
backbone_type = backbone_config.type
backbone_cfg = backbone_config.get()
assert backbone_type == 'spinenet', (f'Inconsistent backbone type '
f'{backbone_type}')
model_id = str(backbone_cfg.model_id)
if model_id not in SCALING_MAP:
raise ValueError(
'SpineNet-{} is not a valid architecture.'.format(model_id))
scaling_params = SCALING_MAP[model_id]
return SpineNet(
input_specs=input_specs,
min_level=backbone_cfg.min_level,
max_level=backbone_cfg.max_level,
endpoints_num_filters=scaling_params['endpoints_num_filters'],
resample_alpha=scaling_params['resample_alpha'],
block_repeats=scaling_params['block_repeats'],
filter_size_scale=scaling_params['filter_size_scale'],
init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
kernel_regularizer=l2_regularizer,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon)