Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Create masked LM/next sentence masked_lm TF examples for BERT.""" | |
import collections | |
import itertools | |
import random | |
# Import libraries | |
from absl import app | |
from absl import flags | |
from absl import logging | |
import tensorflow as tf, tf_keras | |
from official.nlp.tools import tokenization | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string("input_file", None, | |
"Input raw text file (or comma-separated list of files).") | |
flags.DEFINE_string( | |
"output_file", None, | |
"Output TF example file (or comma-separated list of files).") | |
flags.DEFINE_string("vocab_file", None, | |
"The vocabulary file that the BERT model was trained on.") | |
flags.DEFINE_bool( | |
"do_lower_case", True, | |
"Whether to lower case the input text. Should be True for uncased " | |
"models and False for cased models.") | |
flags.DEFINE_bool( | |
"do_whole_word_mask", False, | |
"Whether to use whole word masking rather than per-WordPiece masking.") | |
flags.DEFINE_integer( | |
"max_ngram_size", None, | |
"Mask contiguous whole words (n-grams) of up to `max_ngram_size` using a " | |
"weighting scheme to favor shorter n-grams. " | |
"Note: `--do_whole_word_mask=True` must also be set when n-gram masking.") | |
flags.DEFINE_bool( | |
"gzip_compress", False, | |
"Whether to use `GZIP` compress option to get compressed TFRecord files.") | |
flags.DEFINE_bool( | |
"use_v2_feature_names", False, | |
"Whether to use the feature names consistent with the models.") | |
flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.") | |
flags.DEFINE_integer("max_predictions_per_seq", 20, | |
"Maximum number of masked LM predictions per sequence.") | |
flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.") | |
flags.DEFINE_integer( | |
"dupe_factor", 10, | |
"Number of times to duplicate the input data (with different masks).") | |
flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.") | |
flags.DEFINE_float( | |
"short_seq_prob", 0.1, | |
"Probability of creating sequences which are shorter than the " | |
"maximum length.") | |
class TrainingInstance(object): | |
"""A single training instance (sentence pair).""" | |
def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels, | |
is_random_next): | |
self.tokens = tokens | |
self.segment_ids = segment_ids | |
self.is_random_next = is_random_next | |
self.masked_lm_positions = masked_lm_positions | |
self.masked_lm_labels = masked_lm_labels | |
def __str__(self): | |
s = "" | |
s += "tokens: %s\n" % (" ".join( | |
[tokenization.printable_text(x) for x in self.tokens])) | |
s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids])) | |
s += "is_random_next: %s\n" % self.is_random_next | |
s += "masked_lm_positions: %s\n" % (" ".join( | |
[str(x) for x in self.masked_lm_positions])) | |
s += "masked_lm_labels: %s\n" % (" ".join( | |
[tokenization.printable_text(x) for x in self.masked_lm_labels])) | |
s += "\n" | |
return s | |
def __repr__(self): | |
return self.__str__() | |
def write_instance_to_example_files(instances, tokenizer, max_seq_length, | |
max_predictions_per_seq, output_files, | |
gzip_compress, use_v2_feature_names): | |
"""Creates TF example files from `TrainingInstance`s.""" | |
writers = [] | |
for output_file in output_files: | |
writers.append( | |
tf.io.TFRecordWriter( | |
output_file, options="GZIP" if gzip_compress else "")) | |
writer_index = 0 | |
total_written = 0 | |
for (inst_index, instance) in enumerate(instances): | |
input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) | |
input_mask = [1] * len(input_ids) | |
segment_ids = list(instance.segment_ids) | |
assert len(input_ids) <= max_seq_length | |
while len(input_ids) < max_seq_length: | |
input_ids.append(0) | |
input_mask.append(0) | |
segment_ids.append(0) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
masked_lm_positions = list(instance.masked_lm_positions) | |
masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) | |
masked_lm_weights = [1.0] * len(masked_lm_ids) | |
while len(masked_lm_positions) < max_predictions_per_seq: | |
masked_lm_positions.append(0) | |
masked_lm_ids.append(0) | |
masked_lm_weights.append(0.0) | |
next_sentence_label = 1 if instance.is_random_next else 0 | |
features = collections.OrderedDict() | |
if use_v2_feature_names: | |
features["input_word_ids"] = create_int_feature(input_ids) | |
features["input_type_ids"] = create_int_feature(segment_ids) | |
else: | |
features["input_ids"] = create_int_feature(input_ids) | |
features["segment_ids"] = create_int_feature(segment_ids) | |
features["input_mask"] = create_int_feature(input_mask) | |
features["masked_lm_positions"] = create_int_feature(masked_lm_positions) | |
features["masked_lm_ids"] = create_int_feature(masked_lm_ids) | |
features["masked_lm_weights"] = create_float_feature(masked_lm_weights) | |
features["next_sentence_labels"] = create_int_feature([next_sentence_label]) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
writers[writer_index].write(tf_example.SerializeToString()) | |
writer_index = (writer_index + 1) % len(writers) | |
total_written += 1 | |
if inst_index < 20: | |
logging.info("*** Example ***") | |
logging.info("tokens: %s", " ".join( | |
[tokenization.printable_text(x) for x in instance.tokens])) | |
for feature_name in features.keys(): | |
feature = features[feature_name] | |
values = [] | |
if feature.int64_list.value: | |
values = feature.int64_list.value | |
elif feature.float_list.value: | |
values = feature.float_list.value | |
logging.info("%s: %s", feature_name, " ".join([str(x) for x in values])) | |
for writer in writers: | |
writer.close() | |
logging.info("Wrote %d total instances", total_written) | |
def create_int_feature(values): | |
feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) | |
return feature | |
def create_float_feature(values): | |
feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) | |
return feature | |
def create_training_instances(input_files, | |
tokenizer, | |
max_seq_length, | |
dupe_factor, | |
short_seq_prob, | |
masked_lm_prob, | |
max_predictions_per_seq, | |
rng, | |
do_whole_word_mask=False, | |
max_ngram_size=None): | |
"""Create `TrainingInstance`s from raw text.""" | |
all_documents = [[]] | |
# Input file format: | |
# (1) One sentence per line. These should ideally be actual sentences, not | |
# entire paragraphs or arbitrary spans of text. (Because we use the | |
# sentence boundaries for the "next sentence prediction" task). | |
# (2) Blank lines between documents. Document boundaries are needed so | |
# that the "next sentence prediction" task doesn't span between documents. | |
for input_file in input_files: | |
with tf.io.gfile.GFile(input_file, "rb") as reader: | |
while True: | |
line = tokenization.convert_to_unicode(reader.readline()) | |
if not line: | |
break | |
line = line.strip() | |
# Empty lines are used as document delimiters | |
if not line: | |
all_documents.append([]) | |
tokens = tokenizer.tokenize(line) | |
if tokens: | |
all_documents[-1].append(tokens) | |
# Remove empty documents | |
all_documents = [x for x in all_documents if x] | |
rng.shuffle(all_documents) | |
vocab_words = list(tokenizer.vocab.keys()) | |
instances = [] | |
for _ in range(dupe_factor): | |
for document_index in range(len(all_documents)): | |
instances.extend( | |
create_instances_from_document( | |
all_documents, document_index, max_seq_length, short_seq_prob, | |
masked_lm_prob, max_predictions_per_seq, vocab_words, rng, | |
do_whole_word_mask, max_ngram_size)) | |
rng.shuffle(instances) | |
return instances | |
def create_instances_from_document( | |
all_documents, document_index, max_seq_length, short_seq_prob, | |
masked_lm_prob, max_predictions_per_seq, vocab_words, rng, | |
do_whole_word_mask=False, | |
max_ngram_size=None): | |
"""Creates `TrainingInstance`s for a single document.""" | |
document = all_documents[document_index] | |
# Account for [CLS], [SEP], [SEP] | |
max_num_tokens = max_seq_length - 3 | |
# We *usually* want to fill up the entire sequence since we are padding | |
# to `max_seq_length` anyways, so short sequences are generally wasted | |
# computation. However, we *sometimes* | |
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter | |
# sequences to minimize the mismatch between pre-training and fine-tuning. | |
# The `target_seq_length` is just a rough target however, whereas | |
# `max_seq_length` is a hard limit. | |
target_seq_length = max_num_tokens | |
if rng.random() < short_seq_prob: | |
target_seq_length = rng.randint(2, max_num_tokens) | |
# We DON'T just concatenate all of the tokens from a document into a long | |
# sequence and choose an arbitrary split point because this would make the | |
# next sentence prediction task too easy. Instead, we split the input into | |
# segments "A" and "B" based on the actual "sentences" provided by the user | |
# input. | |
instances = [] | |
current_chunk = [] | |
current_length = 0 | |
i = 0 | |
while i < len(document): | |
segment = document[i] | |
current_chunk.append(segment) | |
current_length += len(segment) | |
if i == len(document) - 1 or current_length >= target_seq_length: | |
if current_chunk: | |
# `a_end` is how many segments from `current_chunk` go into the `A` | |
# (first) sentence. | |
a_end = 1 | |
if len(current_chunk) >= 2: | |
a_end = rng.randint(1, len(current_chunk) - 1) | |
tokens_a = [] | |
for j in range(a_end): | |
tokens_a.extend(current_chunk[j]) | |
tokens_b = [] | |
# Random next | |
is_random_next = False | |
if len(current_chunk) == 1 or rng.random() < 0.5: | |
is_random_next = True | |
target_b_length = target_seq_length - len(tokens_a) | |
# This should rarely go for more than one iteration for large | |
# corpora. However, just to be careful, we try to make sure that | |
# the random document is not the same as the document | |
# we're processing. | |
for _ in range(10): | |
random_document_index = rng.randint(0, len(all_documents) - 1) | |
if random_document_index != document_index: | |
break | |
random_document = all_documents[random_document_index] | |
random_start = rng.randint(0, len(random_document) - 1) | |
for j in range(random_start, len(random_document)): | |
tokens_b.extend(random_document[j]) | |
if len(tokens_b) >= target_b_length: | |
break | |
# We didn't actually use these segments so we "put them back" so | |
# they don't go to waste. | |
num_unused_segments = len(current_chunk) - a_end | |
i -= num_unused_segments | |
# Actual next | |
else: | |
is_random_next = False | |
for j in range(a_end, len(current_chunk)): | |
tokens_b.extend(current_chunk[j]) | |
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng) | |
assert len(tokens_a) >= 1 | |
assert len(tokens_b) >= 1 | |
tokens = [] | |
segment_ids = [] | |
tokens.append("[CLS]") | |
segment_ids.append(0) | |
for token in tokens_a: | |
tokens.append(token) | |
segment_ids.append(0) | |
tokens.append("[SEP]") | |
segment_ids.append(0) | |
for token in tokens_b: | |
tokens.append(token) | |
segment_ids.append(1) | |
tokens.append("[SEP]") | |
segment_ids.append(1) | |
(tokens, masked_lm_positions, | |
masked_lm_labels) = create_masked_lm_predictions( | |
tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng, | |
do_whole_word_mask, max_ngram_size) | |
instance = TrainingInstance( | |
tokens=tokens, | |
segment_ids=segment_ids, | |
is_random_next=is_random_next, | |
masked_lm_positions=masked_lm_positions, | |
masked_lm_labels=masked_lm_labels) | |
instances.append(instance) | |
current_chunk = [] | |
current_length = 0 | |
i += 1 | |
return instances | |
MaskedLmInstance = collections.namedtuple("MaskedLmInstance", | |
["index", "label"]) | |
# A _Gram is a [half-open) interval of token indices which form a word. | |
# E.g., | |
# words: ["The", "doghouse"] | |
# tokens: ["The", "dog", "##house"] | |
# grams: [(0,1), (1,3)] | |
_Gram = collections.namedtuple("_Gram", ["begin", "end"]) | |
def _window(iterable, size): | |
"""Helper to create a sliding window iterator with a given size. | |
E.g., | |
input = [1, 2, 3, 4] | |
_window(input, 1) => [1], [2], [3], [4] | |
_window(input, 2) => [1, 2], [2, 3], [3, 4] | |
_window(input, 3) => [1, 2, 3], [2, 3, 4] | |
_window(input, 4) => [1, 2, 3, 4] | |
_window(input, 5) => None | |
Args: | |
iterable: elements to iterate over. | |
size: size of the window. | |
Yields: | |
Elements of `iterable` batched into a sliding window of length `size`. | |
""" | |
i = iter(iterable) | |
window = [] | |
try: | |
for e in range(0, size): | |
window.append(next(i)) | |
yield window | |
except StopIteration: | |
# handle the case where iterable's length is less than the window size. | |
return | |
for e in i: | |
window = window[1:] + [e] | |
yield window | |
def _contiguous(sorted_grams): | |
"""Test whether a sequence of grams is contiguous. | |
Args: | |
sorted_grams: _Grams which are sorted in increasing order. | |
Returns: | |
True if `sorted_grams` are touching each other. | |
E.g., | |
_contiguous([(1, 4), (4, 5), (5, 10)]) == True | |
_contiguous([(1, 2), (4, 5)]) == False | |
""" | |
for a, b in _window(sorted_grams, 2): | |
if a.end != b.begin: | |
return False | |
return True | |
def _masking_ngrams(grams, max_ngram_size, max_masked_tokens, rng): | |
"""Create a list of masking {1, ..., n}-grams from a list of one-grams. | |
This is an extention of 'whole word masking' to mask multiple, contiguous | |
words such as (e.g., "the red boat"). | |
Each input gram represents the token indices of a single word, | |
words: ["the", "red", "boat"] | |
tokens: ["the", "red", "boa", "##t"] | |
grams: [(0,1), (1,2), (2,4)] | |
For a `max_ngram_size` of three, possible outputs masks include: | |
1-grams: (0,1), (1,2), (2,4) | |
2-grams: (0,2), (1,4) | |
3-grams; (0,4) | |
Output masks will not overlap and contain less than `max_masked_tokens` total | |
tokens. E.g., for the example above with `max_masked_tokens` as three, | |
valid outputs are, | |
[(0,1), (1,2)] # "the", "red" covering two tokens | |
[(1,2), (2,4)] # "red", "boa", "##t" covering three tokens | |
The length of the selected n-gram follows a zipf weighting to | |
favor shorter n-gram sizes (weight(1)=1, weight(2)=1/2, weight(3)=1/3, ...). | |
Args: | |
grams: List of one-grams. | |
max_ngram_size: Maximum number of contiguous one-grams combined to create | |
an n-gram. | |
max_masked_tokens: Maximum total number of tokens to be masked. | |
rng: `random.Random` generator. | |
Returns: | |
A list of n-grams to be used as masks. | |
""" | |
if not grams: | |
return None | |
grams = sorted(grams) | |
num_tokens = grams[-1].end | |
# Ensure our grams are valid (i.e., they don't overlap). | |
for a, b in _window(grams, 2): | |
if a.end > b.begin: | |
raise ValueError("overlapping grams: {}".format(grams)) | |
# Build map from n-gram length to list of n-grams. | |
ngrams = {i: [] for i in range(1, max_ngram_size+1)} | |
for gram_size in range(1, max_ngram_size+1): | |
for g in _window(grams, gram_size): | |
if _contiguous(g): | |
# Add an n-gram which spans these one-grams. | |
ngrams[gram_size].append(_Gram(g[0].begin, g[-1].end)) | |
# Shuffle each list of n-grams. | |
for v in ngrams.values(): | |
rng.shuffle(v) | |
# Create the weighting for n-gram length selection. | |
# Stored cummulatively for `random.choices` below. | |
cummulative_weights = list( | |
itertools.accumulate([1./n for n in range(1, max_ngram_size+1)])) | |
output_ngrams = [] | |
# Keep a bitmask of which tokens have been masked. | |
masked_tokens = [False] * num_tokens | |
# Loop until we have enough masked tokens or there are no more candidate | |
# n-grams of any length. | |
# Each code path should ensure one or more elements from `ngrams` are removed | |
# to guarentee this loop terminates. | |
while (sum(masked_tokens) < max_masked_tokens and | |
sum(len(s) for s in ngrams.values())): | |
# Pick an n-gram size based on our weights. | |
sz = random.choices(range(1, max_ngram_size+1), | |
cum_weights=cummulative_weights)[0] | |
# Ensure this size doesn't result in too many masked tokens. | |
# E.g., a two-gram contains _at least_ two tokens. | |
if sum(masked_tokens) + sz > max_masked_tokens: | |
# All n-grams of this length are too long and can be removed from | |
# consideration. | |
ngrams[sz].clear() | |
continue | |
# All of the n-grams of this size have been used. | |
if not ngrams[sz]: | |
continue | |
# Choose a random n-gram of the given size. | |
gram = ngrams[sz].pop() | |
num_gram_tokens = gram.end-gram.begin | |
# Check if this would add too many tokens. | |
if num_gram_tokens + sum(masked_tokens) > max_masked_tokens: | |
continue | |
# Check if any of the tokens in this gram have already been masked. | |
if sum(masked_tokens[gram.begin:gram.end]): | |
continue | |
# Found a usable n-gram! Mark its tokens as masked and add it to return. | |
masked_tokens[gram.begin:gram.end] = [True] * (gram.end-gram.begin) | |
output_ngrams.append(gram) | |
return output_ngrams | |
def _wordpieces_to_grams(tokens): | |
"""Reconstitue grams (words) from `tokens`. | |
E.g., | |
tokens: ['[CLS]', 'That', 'lit', '##tle', 'blue', 'tru', '##ck', '[SEP]'] | |
grams: [ [1,2), [2, 4), [4,5) , [5, 6)] | |
Args: | |
tokens: list of wordpieces | |
Returns: | |
List of _Grams representing spans of whole words | |
(without "[CLS]" and "[SEP]"). | |
""" | |
grams = [] | |
gram_start_pos = None | |
for i, token in enumerate(tokens): | |
if gram_start_pos is not None and token.startswith("##"): | |
continue | |
if gram_start_pos is not None: | |
grams.append(_Gram(gram_start_pos, i)) | |
if token not in ["[CLS]", "[SEP]"]: | |
gram_start_pos = i | |
else: | |
gram_start_pos = None | |
if gram_start_pos is not None: | |
grams.append(_Gram(gram_start_pos, len(tokens))) | |
return grams | |
def create_masked_lm_predictions(tokens, masked_lm_prob, | |
max_predictions_per_seq, vocab_words, rng, | |
do_whole_word_mask, | |
max_ngram_size=None): | |
"""Creates the predictions for the masked LM objective.""" | |
if do_whole_word_mask: | |
grams = _wordpieces_to_grams(tokens) | |
else: | |
# Here we consider each token to be a word to allow for sub-word masking. | |
if max_ngram_size: | |
raise ValueError("cannot use ngram masking without whole word masking") | |
grams = [_Gram(i, i+1) for i in range(0, len(tokens)) | |
if tokens[i] not in ["[CLS]", "[SEP]"]] | |
num_to_predict = min(max_predictions_per_seq, | |
max(1, int(round(len(tokens) * masked_lm_prob)))) | |
# Generate masks. If `max_ngram_size` in [0, None] it means we're doing | |
# whole word masking or token level masking. Both of these can be treated | |
# as the `max_ngram_size=1` case. | |
masked_grams = _masking_ngrams(grams, max_ngram_size or 1, | |
num_to_predict, rng) | |
masked_lms = [] | |
output_tokens = list(tokens) | |
for gram in masked_grams: | |
# 80% of the time, replace all n-gram tokens with [MASK] | |
if rng.random() < 0.8: | |
replacement_action = lambda idx: "[MASK]" | |
else: | |
# 10% of the time, keep all the original n-gram tokens. | |
if rng.random() < 0.5: | |
replacement_action = lambda idx: tokens[idx] | |
# 10% of the time, replace each n-gram token with a random word. | |
else: | |
replacement_action = lambda idx: rng.choice(vocab_words) | |
for idx in range(gram.begin, gram.end): | |
output_tokens[idx] = replacement_action(idx) | |
masked_lms.append(MaskedLmInstance(index=idx, label=tokens[idx])) | |
assert len(masked_lms) <= num_to_predict | |
masked_lms = sorted(masked_lms, key=lambda x: x.index) | |
masked_lm_positions = [] | |
masked_lm_labels = [] | |
for p in masked_lms: | |
masked_lm_positions.append(p.index) | |
masked_lm_labels.append(p.label) | |
return (output_tokens, masked_lm_positions, masked_lm_labels) | |
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng): | |
"""Truncates a pair of sequences to a maximum sequence length.""" | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_num_tokens: | |
break | |
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b | |
assert len(trunc_tokens) >= 1 | |
# We want to sometimes truncate from the front and sometimes from the | |
# back to add more randomness and avoid biases. | |
if rng.random() < 0.5: | |
del trunc_tokens[0] | |
else: | |
trunc_tokens.pop() | |
def main(_): | |
tokenizer = tokenization.FullTokenizer( | |
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
input_files = [] | |
for input_pattern in FLAGS.input_file.split(","): | |
input_files.extend(tf.io.gfile.glob(input_pattern)) | |
logging.info("*** Reading from input files ***") | |
for input_file in input_files: | |
logging.info(" %s", input_file) | |
rng = random.Random(FLAGS.random_seed) | |
instances = create_training_instances( | |
input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor, | |
FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq, | |
rng, FLAGS.do_whole_word_mask, FLAGS.max_ngram_size) | |
output_files = FLAGS.output_file.split(",") | |
logging.info("*** Writing to output files ***") | |
for output_file in output_files: | |
logging.info(" %s", output_file) | |
write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length, | |
FLAGS.max_predictions_per_seq, output_files, | |
FLAGS.gzip_compress, | |
FLAGS.use_v2_feature_names) | |
if __name__ == "__main__": | |
flags.mark_flag_as_required("input_file") | |
flags.mark_flag_as_required("output_file") | |
flags.mark_flag_as_required("vocab_file") | |
app.run(main) | |