Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for Gaussian process functions.""" | |
import os | |
import shutil | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import gaussian_process | |
def exact_gaussian_kernel(x1, x2): | |
"""Computes exact Gaussian kernel value(s) for tensors x1 and x2.""" | |
x1_squared = tf.reduce_sum(tf.square(x1), list(range(1, len(x1.shape)))) | |
x2_squared = tf.reduce_sum(tf.square(x2), list(range(1, len(x2.shape)))) | |
square = (x1_squared[:, tf.newaxis] + x2_squared[tf.newaxis, :] - | |
2 * tf.matmul(x1, x2, transpose_b=True)) | |
return tf.math.exp(-square / 2.) | |
def _generate_normal_data(num_sample, num_dim, loc): | |
"""Generates random data sampled from i.i.d. normal distribution.""" | |
return np.random.normal( | |
size=(num_sample, num_dim), loc=loc, scale=1. / np.sqrt(num_dim)) | |
def _generate_rbf_data(x_data, orthogonal=True): | |
"""Generates high-dim data that is the eigen components of a RBF kernel.""" | |
k_rbf = exact_gaussian_kernel(x_data, x_data) | |
x_orth, x_diag, _ = np.linalg.svd(k_rbf) | |
if orthogonal: | |
return x_orth | |
return np.diag(np.sqrt(x_diag)).dot(x_orth.T) | |
def _make_minibatch_iterator(data_numpy, batch_size, num_epoch): | |
"""Makes a tf.data.Dataset for given batch size and num epoches.""" | |
dataset = tf.data.Dataset.from_tensor_slices(data_numpy) | |
dataset = dataset.repeat(num_epoch).batch(batch_size) | |
return iter(dataset) | |
def _compute_posterior_kernel(x_tr, x_ts, kernel_func, ridge_penalty): | |
"""Computes the posterior covariance matrix of a Gaussian process.""" | |
num_sample = x_tr.shape[0] | |
k_tt_inv = tf.linalg.inv( | |
kernel_func(x_tr, x_tr) + ridge_penalty * np.eye(num_sample)) | |
k_ts = kernel_func(x_tr, x_ts) | |
k_ss = kernel_func(x_ts, x_ts) | |
return k_ss - tf.matmul(k_ts, tf.matmul(k_tt_inv, k_ts), transpose_a=True) | |
class GaussianProcessTest(tf.test.TestCase, parameterized.TestCase): | |
def setUp(self): | |
super(GaussianProcessTest, self).setUp() | |
self.num_data_dim = 10 | |
self.num_inducing = 1024 | |
self.num_train_sample = 1024 | |
self.num_test_sample = 256 | |
self.prec_tolerance = {'atol': 1e-3, 'rtol': 5e-2} | |
self.cov_tolerance = {'atol': 5e-2, 'rtol': 2.} | |
self.rbf_kern_func = exact_gaussian_kernel | |
self.x_tr = _generate_normal_data( | |
self.num_train_sample, self.num_data_dim, loc=0.) | |
self.x_ts = _generate_normal_data( | |
self.num_test_sample, self.num_data_dim, loc=1.) | |
def test_layer_build(self): | |
"""Tests if layer.built=True after building.""" | |
rfgp_model = gaussian_process.RandomFeatureGaussianProcess(units=1) | |
rfgp_model.build(input_shape=self.x_tr.shape) | |
self.assertTrue(rfgp_model.built) | |
def test_laplace_covariance_minibatch(self, generate_orthogonal_data): | |
"""Tests if model correctly learns population-lvel precision matrix.""" | |
batch_size = 50 | |
epochs = 1000 | |
x_data = _generate_rbf_data(self.x_ts, generate_orthogonal_data) | |
data_iterator = _make_minibatch_iterator(x_data, batch_size, epochs) | |
# Estimates precision matrix using minibatch. | |
cov_estimator = gaussian_process.LaplaceRandomFeatureCovariance( | |
momentum=0.999, ridge_penalty=0) | |
for minibatch_data in data_iterator: | |
_ = cov_estimator(minibatch_data, training=True) | |
# Evaluation | |
prec_mat_expected = x_data.T.dot(x_data) | |
prec_mat_computed = ( | |
cov_estimator.precision_matrix.numpy() * self.num_test_sample) | |
np.testing.assert_allclose(prec_mat_computed, prec_mat_expected, | |
**self.prec_tolerance) | |
def test_random_feature_prior_approximation(self): | |
"""Tests random feature GP's ability in approximating exact GP prior.""" | |
num_inducing = 10240 | |
rfgp_model = gaussian_process.RandomFeatureGaussianProcess( | |
units=1, | |
num_inducing=num_inducing, | |
normalize_input=False, | |
gp_kernel_type='gaussian', | |
return_random_features=True) | |
# Extract random features. | |
_, _, gp_feature = rfgp_model(self.x_tr, training=True) | |
gp_feature_np = gp_feature.numpy() | |
prior_kernel_computed = gp_feature_np.dot(gp_feature_np.T) | |
prior_kernel_expected = self.rbf_kern_func(self.x_tr, self.x_tr) | |
np.testing.assert_allclose(prior_kernel_computed, prior_kernel_expected, | |
**self.cov_tolerance) | |
def test_random_feature_posterior_approximation(self): | |
"""Tests random feature GP's ability in approximating exact GP posterior.""" | |
# Set momentum = 0.5 so posterior precision matrix is 0.5 * (I + K). | |
gp_cov_momentum = 0.5 | |
gp_cov_ridge_penalty = 1. | |
num_inducing = 1024 | |
rfgp_model = gaussian_process.RandomFeatureGaussianProcess( | |
units=1, | |
num_inducing=num_inducing, | |
normalize_input=False, | |
gp_kernel_type='gaussian', | |
gp_cov_momentum=gp_cov_momentum, | |
gp_cov_ridge_penalty=gp_cov_ridge_penalty) | |
# Computes posterior covariance on test data. | |
_, _ = rfgp_model(self.x_tr, training=True) | |
_, gp_cov_ts = rfgp_model(self.x_ts, training=False) | |
# Scale up covariance estimate since prec matrix is down-scaled by momentum. | |
post_kernel_computed = gp_cov_ts * gp_cov_momentum | |
post_kernel_expected = _compute_posterior_kernel(self.x_tr, self.x_ts, | |
self.rbf_kern_func, | |
gp_cov_ridge_penalty) | |
np.testing.assert_allclose(post_kernel_computed, post_kernel_expected, | |
**self.cov_tolerance) | |
def test_random_feature_linear_kernel(self): | |
"""Tests if linear kernel indeed leads to an identity mapping.""" | |
# Specify linear kernel | |
gp_kernel_type = 'linear' | |
normalize_input = False | |
scale_random_features = False | |
use_custom_random_features = True | |
rfgp_model = gaussian_process.RandomFeatureGaussianProcess( | |
units=1, | |
normalize_input=normalize_input, | |
gp_kernel_type=gp_kernel_type, | |
scale_random_features=scale_random_features, | |
use_custom_random_features=use_custom_random_features, | |
return_random_features=True) | |
_, _, gp_feature = rfgp_model(self.x_tr, training=True) | |
# Check if linear kernel leads to identity mapping. | |
np.testing.assert_allclose(gp_feature, self.x_tr, **self.prec_tolerance) | |
def test_no_matrix_update_during_test(self): | |
"""Tests if the precision matrix is not updated during testing.""" | |
rfgp_model = gaussian_process.RandomFeatureGaussianProcess(units=1) | |
# Training. | |
_, gp_covmat_null = rfgp_model(self.x_tr, training=True) | |
precision_mat_before_test = rfgp_model._gp_cov_layer.precision_matrix | |
# Testing. | |
_ = rfgp_model(self.x_ts, training=False) | |
precision_mat_after_test = rfgp_model._gp_cov_layer.precision_matrix | |
self.assertAllClose( | |
gp_covmat_null, tf.eye(self.num_train_sample), atol=1e-4) | |
self.assertAllClose( | |
precision_mat_before_test, precision_mat_after_test, atol=1e-4) | |
def test_state_saving_and_loading(self): | |
"""Tests if the loaded model returns same results.""" | |
input_data = np.random.random((1, 2)) | |
rfgp_model = gaussian_process.RandomFeatureGaussianProcess(units=1) | |
inputs = tf_keras.Input((2,), batch_size=1) | |
outputs = rfgp_model(inputs) | |
model = tf_keras.Model(inputs, outputs) | |
gp_output, gp_covmat = model.predict(input_data) | |
# Save and then load the model. | |
temp_dir = self.get_temp_dir() | |
self.addCleanup(shutil.rmtree, temp_dir) | |
saved_model_dir = os.path.join(temp_dir, 'rfgp_model') | |
model.save(saved_model_dir) | |
new_model = tf_keras.models.load_model(saved_model_dir) | |
gp_output_new, gp_covmat_new = new_model.predict(input_data) | |
self.assertAllClose(gp_output, gp_output_new, atol=1e-4) | |
self.assertAllClose(gp_covmat, gp_covmat_new, atol=1e-4) | |
class MeanFieldLogitsTest(tf.test.TestCase): | |
def testMeanFieldLogitsLikelihood(self): | |
"""Tests if scaling is correct under different likelihood.""" | |
batch_size = 10 | |
num_classes = 12 | |
variance = 1.5 | |
mean_field_factor = 2. | |
rng = np.random.RandomState(0) | |
tf.random.set_seed(1) | |
logits = rng.randn(batch_size, num_classes) | |
covmat = tf.linalg.diag([variance] * batch_size) | |
logits_logistic = gaussian_process.mean_field_logits( | |
logits, covmat, mean_field_factor=mean_field_factor) | |
self.assertAllClose(logits_logistic, logits / 2., atol=1e-4) | |
def testMeanFieldLogitsTemperatureScaling(self): | |
"""Tests using mean_field_logits as temperature scaling method.""" | |
batch_size = 10 | |
num_classes = 12 | |
rng = np.random.RandomState(0) | |
tf.random.set_seed(1) | |
logits = rng.randn(batch_size, num_classes) | |
# Test if there's no change to logits when mean_field_factor < 0. | |
logits_no_change = gaussian_process.mean_field_logits( | |
logits, covariance_matrix=None, mean_field_factor=-1) | |
# Test if mean_field_logits functions as a temperature scaling method when | |
# mean_field_factor > 0, with temperature = sqrt(1. + mean_field_factor). | |
logits_scale_by_two = gaussian_process.mean_field_logits( | |
logits, covariance_matrix=None, mean_field_factor=3.) | |
self.assertAllClose(logits_no_change, logits, atol=1e-4) | |
self.assertAllClose(logits_scale_by_two, logits / 2., atol=1e-4) | |
if __name__ == '__main__': | |
tf.test.main() | |