Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for pack_optimization.""" | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.layers import pack_optimization | |
class PackOptimizationTest(tf.test.TestCase): | |
def test_bert_embedding_packing(self): | |
batch_size, seq_len, embed_dim = 2, 4, 8 | |
pack_sequences = 2 | |
token_and_position_embed = tf.ones((batch_size, seq_len, embed_dim), | |
dtype=tf.float32) | |
input_mask = tf.ones((batch_size, seq_len), dtype=tf.int32) | |
layer = pack_optimization.PackBertEmbeddings(pack_sequences=pack_sequences) | |
outputs = layer(token_and_position_embed, input_mask) | |
self.assertEqual(outputs["packed_embeddings"].shape, (1, 8, embed_dim)) | |
self.assertEqual(outputs["combined_attention_mask"].shape, (1, 8, 8)) | |
def test_strided_transformer_encoder_block(self): | |
inputs = tf.zeros((2, 4, 8), dtype=tf.float32) | |
attention_mask = tf.ones((2, 4, 4), dtype=tf.float32) | |
transformer = pack_optimization.StridedTransformerEncoderBlock( | |
num_attention_heads=2, inner_dim=4, inner_activation="relu") | |
outputs = transformer([inputs, attention_mask], | |
stride=tf.constant(2, dtype=tf.int32)) | |
self.assertEqual(outputs.shape, (2, 2, 8)) | |
def test_strided_rezero_transformer(self): | |
inputs = tf.zeros((2, 4, 8), dtype=tf.float32) | |
attention_mask = tf.ones((2, 4, 4), dtype=tf.float32) | |
transformer = pack_optimization.StridedReZeroTransformer( | |
num_attention_heads=2, inner_dim=4, inner_activation="relu") | |
outputs = transformer([inputs, attention_mask], | |
stride=tf.constant(2, dtype=tf.int32)) | |
self.assertEqual(outputs.shape, (2, 2, 8)) | |
def test_strided_scaffold(self): | |
inputs = tf.zeros((2, 4, 8), dtype=tf.float32) | |
attention_mask = tf.ones((2, 4, 4), dtype=tf.float32) | |
test_layer = pack_optimization.StridedTransformerScaffold( | |
num_attention_heads=2, | |
inner_dim=128, | |
inner_activation="relu") | |
outputs = test_layer([inputs, attention_mask], | |
stride=tf.constant(2, dtype=tf.int32)) | |
self.assertEqual(outputs.shape, (2, 2, 8)) | |
if __name__ == "__main__": | |
tf.test.main() | |