Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for official.nlp.tasks.translation.""" | |
import functools | |
import os | |
import orbit | |
import tensorflow as tf, tf_keras | |
from sentencepiece import SentencePieceTrainer | |
from official.nlp.data import wmt_dataloader | |
from official.nlp.tasks import translation | |
def _generate_line_file(filepath, lines): | |
with tf.io.gfile.GFile(filepath, "w") as f: | |
for l in lines: | |
f.write("{}\n".format(l)) | |
def _generate_record_file(filepath, src_lines, tgt_lines): | |
writer = tf.io.TFRecordWriter(filepath) | |
for src, tgt in zip(src_lines, tgt_lines): | |
example = tf.train.Example( | |
features=tf.train.Features( | |
feature={ | |
"en": tf.train.Feature( | |
bytes_list=tf.train.BytesList( | |
value=[src.encode()])), | |
"reverse_en": tf.train.Feature( | |
bytes_list=tf.train.BytesList( | |
value=[tgt.encode()])), | |
})) | |
writer.write(example.SerializeToString()) | |
writer.close() | |
def _train_sentencepiece(input_path, vocab_size, model_path, eos_id=1): | |
argstr = " ".join([ | |
f"--input={input_path}", f"--vocab_size={vocab_size}", | |
"--character_coverage=0.995", | |
f"--model_prefix={model_path}", "--model_type=bpe", | |
"--bos_id=-1", "--pad_id=0", f"--eos_id={eos_id}", "--unk_id=2" | |
]) | |
SentencePieceTrainer.Train(argstr) | |
class TranslationTaskTest(tf.test.TestCase): | |
def setUp(self): | |
super(TranslationTaskTest, self).setUp() | |
self._temp_dir = self.get_temp_dir() | |
src_lines = [ | |
"abc ede fg", | |
"bbcd ef a g", | |
"de f a a g" | |
] | |
tgt_lines = [ | |
"dd cc a ef g", | |
"bcd ef a g", | |
"gef cd ba" | |
] | |
self._record_input_path = os.path.join(self._temp_dir, "inputs.record") | |
_generate_record_file(self._record_input_path, src_lines, tgt_lines) | |
self._sentencepeice_input_path = os.path.join(self._temp_dir, "inputs.txt") | |
_generate_line_file(self._sentencepeice_input_path, src_lines + tgt_lines) | |
sentencepeice_model_prefix = os.path.join(self._temp_dir, "sp") | |
_train_sentencepiece(self._sentencepeice_input_path, 11, | |
sentencepeice_model_prefix) | |
self._sentencepeice_model_path = "{}.model".format( | |
sentencepeice_model_prefix) | |
def test_task(self): | |
config = translation.TranslationConfig( | |
model=translation.ModelConfig( | |
encoder=translation.EncDecoder(num_layers=1), | |
decoder=translation.EncDecoder(num_layers=1)), | |
train_data=wmt_dataloader.WMTDataConfig( | |
input_path=self._record_input_path, | |
src_lang="en", tgt_lang="reverse_en", | |
is_training=True, static_batch=True, global_batch_size=24, | |
max_seq_length=12), | |
sentencepiece_model_path=self._sentencepeice_model_path) | |
task = translation.TranslationTask(config) | |
model = task.build_model() | |
dataset = task.build_inputs(config.train_data) | |
iterator = iter(dataset) | |
optimizer = tf_keras.optimizers.SGD(lr=0.1) | |
task.train_step(next(iterator), model, optimizer) | |
def test_no_sentencepiece_path(self): | |
config = translation.TranslationConfig( | |
model=translation.ModelConfig( | |
encoder=translation.EncDecoder(num_layers=1), | |
decoder=translation.EncDecoder(num_layers=1)), | |
train_data=wmt_dataloader.WMTDataConfig( | |
input_path=self._record_input_path, | |
src_lang="en", tgt_lang="reverse_en", | |
is_training=True, static_batch=True, global_batch_size=4, | |
max_seq_length=4), | |
sentencepiece_model_path=None) | |
with self.assertRaisesRegex( | |
ValueError, | |
"Setencepiece model path not provided."): | |
translation.TranslationTask(config) | |
def test_sentencepiece_no_eos(self): | |
sentencepeice_model_prefix = os.path.join(self._temp_dir, "sp_no_eos") | |
_train_sentencepiece(self._sentencepeice_input_path, 20, | |
sentencepeice_model_prefix, eos_id=-1) | |
sentencepeice_model_path = "{}.model".format( | |
sentencepeice_model_prefix) | |
config = translation.TranslationConfig( | |
model=translation.ModelConfig( | |
encoder=translation.EncDecoder(num_layers=1), | |
decoder=translation.EncDecoder(num_layers=1)), | |
train_data=wmt_dataloader.WMTDataConfig( | |
input_path=self._record_input_path, | |
src_lang="en", tgt_lang="reverse_en", | |
is_training=True, static_batch=True, global_batch_size=4, | |
max_seq_length=4), | |
sentencepiece_model_path=sentencepeice_model_path) | |
with self.assertRaisesRegex( | |
ValueError, | |
"EOS token not in tokenizer vocab.*"): | |
translation.TranslationTask(config) | |
def test_evaluation(self): | |
config = translation.TranslationConfig( | |
model=translation.ModelConfig( | |
encoder=translation.EncDecoder(num_layers=1), | |
decoder=translation.EncDecoder(num_layers=1), | |
padded_decode=False, | |
decode_max_length=64), | |
validation_data=wmt_dataloader.WMTDataConfig( | |
input_path=self._record_input_path, src_lang="en", | |
tgt_lang="reverse_en", static_batch=True, global_batch_size=4), | |
sentencepiece_model_path=self._sentencepeice_model_path) | |
logging_dir = self.get_temp_dir() | |
task = translation.TranslationTask(config, logging_dir=logging_dir) | |
dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(), | |
task.build_inputs, | |
config.validation_data) | |
model = task.build_model() | |
strategy = tf.distribute.get_strategy() | |
aggregated = None | |
for data in dataset: | |
distributed_outputs = strategy.run( | |
functools.partial(task.validation_step, model=model), | |
args=(data,)) | |
outputs = tf.nest.map_structure(strategy.experimental_local_results, | |
distributed_outputs) | |
aggregated = task.aggregate_logs(state=aggregated, step_outputs=outputs) | |
metrics = task.reduce_aggregated_logs(aggregated) | |
self.assertIn("sacrebleu_score", metrics) | |
self.assertIn("bleu_score", metrics) | |
if __name__ == "__main__": | |
tf.test.main() | |