Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
r"""Convert checkpoints created by Estimator (tf1) to be Keras compatible.""" | |
import numpy as np | |
import tensorflow.compat.v1 as tf # TF 1.x | |
# Mapping between old <=> new names. The source pattern in original variable | |
# name will be replaced by destination pattern. | |
BERT_NAME_REPLACEMENTS = ( | |
("bert", "bert_model"), | |
("embeddings/word_embeddings", "word_embeddings/embeddings"), | |
("embeddings/token_type_embeddings", | |
"embedding_postprocessor/type_embeddings"), | |
("embeddings/position_embeddings", | |
"embedding_postprocessor/position_embeddings"), | |
("embeddings/LayerNorm", "embedding_postprocessor/layer_norm"), | |
("attention/self", "self_attention"), | |
("attention/output/dense", "self_attention_output"), | |
("attention/output/LayerNorm", "self_attention_layer_norm"), | |
("intermediate/dense", "intermediate"), | |
("output/dense", "output"), | |
("output/LayerNorm", "output_layer_norm"), | |
("pooler/dense", "pooler_transform"), | |
) | |
BERT_V2_NAME_REPLACEMENTS = ( | |
("bert/", ""), | |
("encoder", "transformer"), | |
("embeddings/word_embeddings", "word_embeddings/embeddings"), | |
("embeddings/token_type_embeddings", "type_embeddings/embeddings"), | |
("embeddings/position_embeddings", "position_embedding/embeddings"), | |
("embeddings/LayerNorm", "embeddings/layer_norm"), | |
("attention/self", "self_attention"), | |
("attention/output/dense", "self_attention/attention_output"), | |
("attention/output/LayerNorm", "self_attention_layer_norm"), | |
("intermediate/dense", "intermediate"), | |
("output/dense", "output"), | |
("output/LayerNorm", "output_layer_norm"), | |
("pooler/dense", "pooler_transform"), | |
("cls/predictions", "bert/cls/predictions"), | |
("cls/predictions/output_bias", "cls/predictions/output_bias/bias"), | |
("cls/seq_relationship/output_bias", "predictions/transform/logits/bias"), | |
("cls/seq_relationship/output_weights", | |
"predictions/transform/logits/kernel"), | |
) | |
BERT_PERMUTATIONS = () | |
BERT_V2_PERMUTATIONS = (("cls/seq_relationship/output_weights", (1, 0)),) | |
def _bert_name_replacement(var_name, name_replacements): | |
"""Gets the variable name replacement.""" | |
for src_pattern, tgt_pattern in name_replacements: | |
if src_pattern in var_name: | |
old_var_name = var_name | |
var_name = var_name.replace(src_pattern, tgt_pattern) | |
tf.logging.info("Converted: %s --> %s", old_var_name, var_name) | |
return var_name | |
def _has_exclude_patterns(name, exclude_patterns): | |
"""Checks if a string contains substrings that match patterns to exclude.""" | |
for p in exclude_patterns: | |
if p in name: | |
return True | |
return False | |
def _get_permutation(name, permutations): | |
"""Checks whether a variable requires transposition by pattern matching.""" | |
for src_pattern, permutation in permutations: | |
if src_pattern in name: | |
tf.logging.info("Permuted: %s --> %s", name, permutation) | |
return permutation | |
return None | |
def _get_new_shape(name, shape, num_heads): | |
"""Checks whether a variable requires reshape by pattern matching.""" | |
if "self_attention/attention_output/kernel" in name: | |
return tuple([num_heads, shape[0] // num_heads, shape[1]]) | |
if "self_attention/attention_output/bias" in name: | |
return shape | |
patterns = [ | |
"self_attention/query", "self_attention/value", "self_attention/key" | |
] | |
for pattern in patterns: | |
if pattern in name: | |
if "kernel" in name: | |
return tuple([shape[0], num_heads, shape[1] // num_heads]) | |
if "bias" in name: | |
return tuple([num_heads, shape[0] // num_heads]) | |
return None | |
def create_v2_checkpoint(model, | |
src_checkpoint, | |
output_path, | |
checkpoint_model_name="model"): | |
"""Converts a name-based matched TF V1 checkpoint to TF V2 checkpoint.""" | |
# Uses streaming-restore in eager model to read V1 name-based checkpoints. | |
model.load_weights(src_checkpoint).assert_existing_objects_matched() | |
if hasattr(model, "checkpoint_items"): | |
checkpoint_items = model.checkpoint_items | |
else: | |
checkpoint_items = {} | |
checkpoint_items[checkpoint_model_name] = model | |
checkpoint = tf.train.Checkpoint(**checkpoint_items) | |
checkpoint.save(output_path) | |
def convert(checkpoint_from_path, | |
checkpoint_to_path, | |
num_heads, | |
name_replacements, | |
permutations, | |
exclude_patterns=None): | |
"""Migrates the names of variables within a checkpoint. | |
Args: | |
checkpoint_from_path: Path to source checkpoint to be read in. | |
checkpoint_to_path: Path to checkpoint to be written out. | |
num_heads: The number of heads of the model. | |
name_replacements: A list of tuples of the form (match_str, replace_str) | |
describing variable names to adjust. | |
permutations: A list of tuples of the form (match_str, permutation) | |
describing permutations to apply to given variables. Note that match_str | |
should match the original variable name, not the replaced one. | |
exclude_patterns: A list of string patterns to exclude variables from | |
checkpoint conversion. | |
Returns: | |
A dictionary that maps the new variable names to the Variable objects. | |
A dictionary that maps the old variable names to the new variable names. | |
""" | |
with tf.Graph().as_default(): | |
tf.logging.info("Reading checkpoint_from_path %s", checkpoint_from_path) | |
reader = tf.train.NewCheckpointReader(checkpoint_from_path) | |
name_shape_map = reader.get_variable_to_shape_map() | |
new_variable_map = {} | |
conversion_map = {} | |
for var_name in name_shape_map: | |
if exclude_patterns and _has_exclude_patterns(var_name, exclude_patterns): | |
continue | |
# Get the original tensor data. | |
tensor = reader.get_tensor(var_name) | |
# Look up the new variable name, if any. | |
new_var_name = _bert_name_replacement(var_name, name_replacements) | |
# See if we need to reshape the underlying tensor. | |
new_shape = None | |
if num_heads > 0: | |
new_shape = _get_new_shape(new_var_name, tensor.shape, num_heads) | |
if new_shape: | |
tf.logging.info("Veriable %s has a shape change from %s to %s", | |
var_name, tensor.shape, new_shape) | |
tensor = np.reshape(tensor, new_shape) | |
# See if we need to permute the underlying tensor. | |
permutation = _get_permutation(var_name, permutations) | |
if permutation: | |
tensor = np.transpose(tensor, permutation) | |
# Create a new variable with the possibly-reshaped or transposed tensor. | |
var = tf.Variable(tensor, name=var_name) | |
# Save the variable into the new variable map. | |
new_variable_map[new_var_name] = var | |
# Keep a list of converter variables for sanity checking. | |
if new_var_name != var_name: | |
conversion_map[var_name] = new_var_name | |
saver = tf.train.Saver(new_variable_map) | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
tf.logging.info("Writing checkpoint_to_path %s", checkpoint_to_path) | |
saver.save(sess, checkpoint_to_path, write_meta_graph=False) | |
tf.logging.info("Summary:") | |
tf.logging.info(" Converted %d variable name(s).", len(new_variable_map)) | |
tf.logging.info(" Converted: %s", str(conversion_map)) | |