ASL-MoViNet-T5-translator / official /nlp /tools /tf2_albert_encoder_checkpoint_converter.py
deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A converter from a tf1 ALBERT encoder checkpoint to a tf2 encoder checkpoint.
The conversion will yield an object-oriented checkpoint that can be used
to restore an AlbertEncoder object.
"""
import os
from absl import app
from absl import flags
import tensorflow as tf, tf_keras
from official.legacy.albert import configs
from official.modeling import tf_utils
from official.nlp.modeling import models
from official.nlp.modeling import networks
from official.nlp.tools import tf1_bert_checkpoint_converter_lib
FLAGS = flags.FLAGS
flags.DEFINE_string("albert_config_file", None,
"Albert configuration file to define core bert layers.")
flags.DEFINE_string(
"checkpoint_to_convert", None,
"Initial checkpoint from a pretrained BERT model core (that is, only the "
"BertModel, with no task heads.)")
flags.DEFINE_string("converted_checkpoint_path", None,
"Name for the created object-based V2 checkpoint.")
flags.DEFINE_string("checkpoint_model_name", "encoder",
"The name of the model when saving the checkpoint, i.e., "
"the checkpoint will be saved using: "
"tf.train.Checkpoint(FLAGS.checkpoint_model_name=model).")
flags.DEFINE_enum(
"converted_model", "encoder", ["encoder", "pretrainer"],
"Whether to convert the checkpoint to a `AlbertEncoder` model or a "
"`BertPretrainerV2` model (with mlm but without classification heads).")
ALBERT_NAME_REPLACEMENTS = (
("bert/encoder/", ""),
("bert/", ""),
("embeddings/word_embeddings", "word_embeddings/embeddings"),
("embeddings/position_embeddings", "position_embedding/embeddings"),
("embeddings/token_type_embeddings", "type_embeddings/embeddings"),
("embeddings/LayerNorm", "embeddings/layer_norm"),
("embedding_hidden_mapping_in", "embedding_projection"),
("group_0/inner_group_0/", ""),
("attention_1/self", "self_attention"),
("attention_1/output/dense", "self_attention/attention_output"),
("transformer/LayerNorm/", "transformer/self_attention_layer_norm/"),
("ffn_1/intermediate/dense", "intermediate"),
("ffn_1/intermediate/output/dense", "output"),
("transformer/LayerNorm_1/", "transformer/output_layer_norm/"),
("pooler/dense", "pooler_transform"),
("cls/predictions", "bert/cls/predictions"),
("cls/predictions/output_bias", "cls/predictions/output_bias/bias"),
("cls/seq_relationship/output_bias", "predictions/transform/logits/bias"),
("cls/seq_relationship/output_weights",
"predictions/transform/logits/kernel"),
)
def _create_albert_model(cfg):
"""Creates an ALBERT keras core model from BERT configuration.
Args:
cfg: A `AlbertConfig` to create the core model.
Returns:
A keras model.
"""
albert_encoder = networks.AlbertEncoder(
vocab_size=cfg.vocab_size,
hidden_size=cfg.hidden_size,
embedding_width=cfg.embedding_size,
num_layers=cfg.num_hidden_layers,
num_attention_heads=cfg.num_attention_heads,
intermediate_size=cfg.intermediate_size,
activation=tf_utils.get_activation(cfg.hidden_act),
dropout_rate=cfg.hidden_dropout_prob,
attention_dropout_rate=cfg.attention_probs_dropout_prob,
max_sequence_length=cfg.max_position_embeddings,
type_vocab_size=cfg.type_vocab_size,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=cfg.initializer_range))
return albert_encoder
def _create_pretrainer_model(cfg):
"""Creates a pretrainer with AlbertEncoder from ALBERT configuration.
Args:
cfg: A `BertConfig` to create the core model.
Returns:
A BertPretrainerV2 model.
"""
albert_encoder = _create_albert_model(cfg)
pretrainer = models.BertPretrainerV2(
encoder_network=albert_encoder,
mlm_activation=tf_utils.get_activation(cfg.hidden_act),
mlm_initializer=tf_keras.initializers.TruncatedNormal(
stddev=cfg.initializer_range))
# Makes sure masked_lm layer's variables in pretrainer are created.
_ = pretrainer(pretrainer.inputs)
return pretrainer
def convert_checkpoint(bert_config, output_path, v1_checkpoint,
checkpoint_model_name,
converted_model="encoder"):
"""Converts a V1 checkpoint into an OO V2 checkpoint."""
output_dir, _ = os.path.split(output_path)
# Create a temporary V1 name-converted checkpoint in the output directory.
temporary_checkpoint_dir = os.path.join(output_dir, "temp_v1")
temporary_checkpoint = os.path.join(temporary_checkpoint_dir, "ckpt")
tf1_bert_checkpoint_converter_lib.convert(
checkpoint_from_path=v1_checkpoint,
checkpoint_to_path=temporary_checkpoint,
num_heads=bert_config.num_attention_heads,
name_replacements=ALBERT_NAME_REPLACEMENTS,
permutations=tf1_bert_checkpoint_converter_lib.BERT_V2_PERMUTATIONS,
exclude_patterns=["adam", "Adam"])
# Create a V2 checkpoint from the temporary checkpoint.
if converted_model == "encoder":
model = _create_albert_model(bert_config)
elif converted_model == "pretrainer":
model = _create_pretrainer_model(bert_config)
else:
raise ValueError("Unsupported converted_model: %s" % converted_model)
tf1_bert_checkpoint_converter_lib.create_v2_checkpoint(
model, temporary_checkpoint, output_path, checkpoint_model_name)
# Clean up the temporary checkpoint, if it exists.
try:
tf.io.gfile.rmtree(temporary_checkpoint_dir)
except tf.errors.OpError:
# If it doesn't exist, we don't need to clean it up; continue.
pass
def main(_):
output_path = FLAGS.converted_checkpoint_path
v1_checkpoint = FLAGS.checkpoint_to_convert
checkpoint_model_name = FLAGS.checkpoint_model_name
converted_model = FLAGS.converted_model
albert_config = configs.AlbertConfig.from_json_file(FLAGS.albert_config_file)
convert_checkpoint(albert_config, output_path, v1_checkpoint,
checkpoint_model_name,
converted_model=converted_model)
if __name__ == "__main__":
app.run(main)