ASL-MoViNet-T5-translator / official /nlp /tools /tf2_bert_encoder_checkpoint_converter.py
deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A converter from a V1 BERT encoder checkpoint to a V2 encoder checkpoint.
The conversion will yield an object-oriented checkpoint that can be used
to restore a BertEncoder or BertPretrainerV2 object (see the `converted_model`
FLAG below).
"""
import os
from absl import app
from absl import flags
import tensorflow as tf, tf_keras
from official.legacy.bert import configs
from official.modeling import tf_utils
from official.nlp.modeling import models
from official.nlp.modeling import networks
from official.nlp.tools import tf1_bert_checkpoint_converter_lib
FLAGS = flags.FLAGS
flags.DEFINE_string("bert_config_file", None,
"Bert configuration file to define core bert layers.")
flags.DEFINE_string(
"checkpoint_to_convert", None,
"Initial checkpoint from a pretrained BERT model core (that is, only the "
"BertModel, with no task heads.)")
flags.DEFINE_string("converted_checkpoint_path", None,
"Name for the created object-based V2 checkpoint.")
flags.DEFINE_string("checkpoint_model_name", "encoder",
"The name of the model when saving the checkpoint, i.e., "
"the checkpoint will be saved using: "
"tf.train.Checkpoint(FLAGS.checkpoint_model_name=model).")
flags.DEFINE_enum(
"converted_model", "encoder", ["encoder", "pretrainer"],
"Whether to convert the checkpoint to a `BertEncoder` model or a "
"`BertPretrainerV2` model (with mlm but without classification heads).")
def _create_bert_model(cfg):
"""Creates a BERT keras core model from BERT configuration.
Args:
cfg: A `BertConfig` to create the core model.
Returns:
A BertEncoder network.
"""
bert_encoder = networks.BertEncoder(
vocab_size=cfg.vocab_size,
hidden_size=cfg.hidden_size,
num_layers=cfg.num_hidden_layers,
num_attention_heads=cfg.num_attention_heads,
intermediate_size=cfg.intermediate_size,
activation=tf_utils.get_activation(cfg.hidden_act),
dropout_rate=cfg.hidden_dropout_prob,
attention_dropout_rate=cfg.attention_probs_dropout_prob,
max_sequence_length=cfg.max_position_embeddings,
type_vocab_size=cfg.type_vocab_size,
initializer=tf_keras.initializers.TruncatedNormal(
stddev=cfg.initializer_range),
embedding_width=cfg.embedding_size)
return bert_encoder
def _create_bert_pretrainer_model(cfg):
"""Creates a BERT keras core model from BERT configuration.
Args:
cfg: A `BertConfig` to create the core model.
Returns:
A BertPretrainerV2 model.
"""
bert_encoder = _create_bert_model(cfg)
pretrainer = models.BertPretrainerV2(
encoder_network=bert_encoder,
mlm_activation=tf_utils.get_activation(cfg.hidden_act),
mlm_initializer=tf_keras.initializers.TruncatedNormal(
stddev=cfg.initializer_range))
# Makes sure the pretrainer variables are created.
_ = pretrainer(pretrainer.inputs)
return pretrainer
def convert_checkpoint(bert_config,
output_path,
v1_checkpoint,
checkpoint_model_name="model",
converted_model="encoder"):
"""Converts a V1 checkpoint into an OO V2 checkpoint."""
output_dir, _ = os.path.split(output_path)
tf.io.gfile.makedirs(output_dir)
# Create a temporary V1 name-converted checkpoint in the output directory.
temporary_checkpoint_dir = os.path.join(output_dir, "temp_v1")
temporary_checkpoint = os.path.join(temporary_checkpoint_dir, "ckpt")
tf1_bert_checkpoint_converter_lib.convert(
checkpoint_from_path=v1_checkpoint,
checkpoint_to_path=temporary_checkpoint,
num_heads=bert_config.num_attention_heads,
name_replacements=(
tf1_bert_checkpoint_converter_lib.BERT_V2_NAME_REPLACEMENTS),
permutations=tf1_bert_checkpoint_converter_lib.BERT_V2_PERMUTATIONS,
exclude_patterns=["adam", "Adam"])
if converted_model == "encoder":
model = _create_bert_model(bert_config)
elif converted_model == "pretrainer":
model = _create_bert_pretrainer_model(bert_config)
else:
raise ValueError("Unsupported converted_model: %s" % converted_model)
# Create a V2 checkpoint from the temporary checkpoint.
tf1_bert_checkpoint_converter_lib.create_v2_checkpoint(
model, temporary_checkpoint, output_path, checkpoint_model_name)
# Clean up the temporary checkpoint, if it exists.
try:
tf.io.gfile.rmtree(temporary_checkpoint_dir)
except tf.errors.OpError:
# If it doesn't exist, we don't need to clean it up; continue.
pass
def main(argv):
if len(argv) > 1:
raise app.UsageError("Too many command-line arguments.")
output_path = FLAGS.converted_checkpoint_path
v1_checkpoint = FLAGS.checkpoint_to_convert
checkpoint_model_name = FLAGS.checkpoint_model_name
converted_model = FLAGS.converted_model
bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
convert_checkpoint(
bert_config=bert_config,
output_path=output_path,
v1_checkpoint=v1_checkpoint,
checkpoint_model_name=checkpoint_model_name,
converted_model=converted_model)
if __name__ == "__main__":
app.run(main)