Spaces:
Sleeping
Sleeping
File size: 11,902 Bytes
4dc3e99 1eb9e66 4dc3e99 b6d8eef 4dc3e99 b6d8eef 4dc3e99 a0ca102 4dc3e99 a0ca102 ff76a8d 4dc3e99 92dc96b 0fb7549 92dc96b a0ca102 92dc96b a0ca102 92dc96b 1eb9e66 4dc3e99 1eb9e66 4dc3e99 1eb9e66 5a3ed26 4dc3e99 3a575e4 4dc3e99 3a575e4 4e7aed4 01bc330 1eb9e66 ff64068 1eb9e66 01bc330 1eb9e66 ff64068 1eb9e66 4e7aed4 1eb9e66 a0ca102 ff64068 1eb9e66 a0ca102 1eb9e66 a0ca102 1eb9e66 ff64068 4dc3e99 906193d 4dc3e99 0e089a6 1eb9e66 a0ca102 1eb9e66 a0ca102 1eb9e66 a0ca102 0e089a6 1eb9e66 c472fe6 1eb9e66 a0ca102 4dc3e99 a0ca102 1eb9e66 4dc3e99 a0ca102 109f096 a0ca102 fbe2693 109f096 a0ca102 fbe2693 109f096 3a575e4 a0ca102 1eb9e66 a0ca102 4dc3e99 3a575e4 1eb9e66 a0ca102 109f096 a0ca102 3a575e4 288f88f 4dc3e99 a0ca102 01bc330 4dc3e99 1eb9e66 ff64068 4dc3e99 ff64068 a0ca102 92dc96b a0ca102 92dc96b a0ca102 92dc96b 3a575e4 4dc3e99 3a575e4 a0ca102 92dc96b 3a575e4 4dc3e99 caa6a5d a0ca102 288f88f caa6a5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import json
import os
import random
import time
from functools import partial
from pathlib import Path
from typing import List
import deepinv as dinv
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from factories import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric
### Config
DEVICE_STR = 'cuda' # run model inference on NVIDIA gpu
torch.set_grad_enabled(False) # stops tracking values for gradients
### Gradio Utils
def generate_imgs_from_user(image,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
if image is None:
return None, None, None, None, None, None, None, None
# PIL image -> torch.Tensor
x = transforms.ToTensor()(image).unsqueeze(0).to(DEVICE_STR)
return generate_imgs(x, model, baseline, physics, use_gen, metrics)
def generate_imgs_from_dataset(dataset: EvalDataset, idx: int,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
### Load 1 image
x = dataset[idx] # shape : (C, H, W)
x = x.unsqueeze(0) # shape : (1, C, H, W)
return generate_imgs(x, model, baseline, physics, use_gen, metrics)
def generate_random_imgs_from_dataset(dataset: EvalDataset,
model: EvalModel,
baseline: BaselineModel,
physics: PhysicsWithGenerator,
use_gen: bool,
metrics: List[Metric]):
idx = random.randint(0, len(dataset)-1)
x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs_from_dataset(
dataset, idx, model, baseline, physics, use_gen, metrics
)
return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
def generate_imgs(x: torch.Tensor,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
### Compute y
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
### Compute x_hat from RAM & DPIR
ram_time = time.time()
out = model(y=y, physics=physics.physics)
ram_time = time.time() - ram_time
dpir_time = time.time()
out_baseline = baseline(y=y, physics=physics.physics)
dpir_time = time.time() - dpir_time
### Process tensors before metric computation
if "Blur" in physics.name:
w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2
x = x[..., w_1:w_2, h_1:h_2]
out = out[..., w_1:w_2, h_1:h_2]
if out_baseline.shape != out.shape:
out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]
### Metrics
metrics_y = ""
metrics_out = f"Inference time = {ram_time:.3f}s" + "\n"
metrics_out_baseline = f"Inference time = {dpir_time:.3f}s" + "\n"
for metric in metrics:
if y.shape == x.shape:
metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n"
metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"
### Process y when y shape is different from x shape
if physics.name == "MRI":
y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
elif physics.name == "CT":
y_plot = physics.physics.A_adjoint(y)
else:
y_plot = y.clone()
### Processing images for plotting :
# - clip value outside of [0,1]
# - shape (1, C, H, W) -> (C, H, W)
# - torch.Tensor object -> Pil object
process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
to_pil = transforms.ToPILImage()
x = to_pil(process_img(x)[0].to('cpu'))
y = to_pil(process_img(y_plot)[0].to('cpu'))
out = to_pil(process_img(out)[0].to('cpu'))
out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))
return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline
get_list_metrics_on_DEVICE_STR = partial(Metric.get_list_metrics, device_str=DEVICE_STR)
get_eval_model_on_DEVICE_STR = partial(EvalModel, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)
def get_dataset(dataset_name):
if dataset_name == 'MRI':
available_physics = ['MRI']
physics_name = 'MRI'
baseline_name = 'DPIR_MRI'
elif dataset_name == 'CT':
available_physics = ['CT']
physics_name = 'CT'
baseline_name = 'DPIR_CT'
else:
available_physics = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
physics_name = 'MotionBlur_easy'
baseline_name = 'DPIR'
dataset = get_dataset_on_DEVICE_STR(dataset_name)
idx = 0
physics = get_physics_on_DEVICE_STR(physics_name)
baseline = get_baseline_model_on_DEVICE_STR(baseline_name)
return dataset, idx, physics, baseline, available_physics
### Gradio Blocks interface
title = "Inverse problem playground" # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
gr.Markdown("## " + title)
### DEFAULT VALUES
# Issue: giving directly a `torch.nn.module` to `gr.State(...)` since it has __call__ method
# Solution: using lambda expression
model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", ""))
model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR"))
metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(["PSNR"]))
dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy"))
available_physics_placeholder = gr.State(['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard'])
### LAYOUT
# Display images
with gr.Row():
gt_img = gr.Image(label="Ground-truth IMAGE", interactive=True)
observed_img = gr.Image(label="Observed IMAGE", interactive=False)
model_a_out = gr.Image(label="RAM OUTPUT", interactive=False)
model_b_out = gr.Image(label="DPIR OUTPUT", interactive=False)
@gr.render(inputs=[dataset_placeholder, physics_placeholder, available_physics_placeholder])
def dynamic_layout(dataset, physics, available_physics):
### LAYOUT
# Manage datasets and display metric values
with gr.Row():
with gr.Column():
run_button = gr.Button("Demo on above image")
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
label="Datasets",
value=dataset.name)
idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", key=0)
with gr.Row():
load_button = gr.Button("Run on index image from dataset")
load_random_button = gr.Button("Run on random image from dataset")
with gr.Column():
observed_metrics = gr.Textbox(label="PSNR(Observed, Ground-truth)",
lines=1)
with gr.Column():
out_a_metric = gr.Textbox(label="PSNR(RAM, Ground-truth)",
lines=1)
with gr.Column():
out_b_metric = gr.Textbox(label="PSNR(DPIR, Ground-truth)",
lines=1)
# Manage physics
with gr.Row():
with gr.Column(scale=1):
choose_physics = gr.Radio(choices=available_physics,
label="Physics",
value=physics.name)
use_generator_button = gr.Checkbox(label="Generate physics parameters during inference")
with gr.Column(scale=1):
with gr.Row():
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
label="Updatable Parameter Key")
value_text = gr.Textbox(label="Update Value")
update_button = gr.Button("Manually update parameter value")
with gr.Column(scale=2):
physics_params = gr.Textbox(label="Physics parameters",
lines=5,
value=physics.display_saved_params())
### Event listeners
choose_dataset.change(fn=get_dataset,
inputs=choose_dataset,
outputs=[dataset_placeholder, idx_slider, physics_placeholder, model_b_placeholder, available_physics_placeholder])
choose_physics.change(fn=get_physics_on_DEVICE_STR,
inputs=choose_physics,
outputs=[physics_placeholder])
update_button.click(fn=physics.update_and_display_params,
inputs=[key_selector, value_text], outputs=physics_params)
run_button.click(fn=generate_imgs_from_user,
inputs=[gt_img,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
load_button.click(fn=generate_imgs_from_dataset,
inputs=[dataset_placeholder,
idx_slider,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
load_random_button.click(fn=generate_random_imgs_from_dataset,
inputs=[dataset_placeholder,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[idx_slider, gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
interface.launch()
|