File size: 12,018 Bytes
12a4d59
 
 
 
 
 
 
52893ae
12a4d59
52893ae
12a4d59
 
 
25883b9
12a4d59
 
25883b9
 
 
33dc149
 
12a4d59
92c07f0
 
 
 
 
e35108e
 
 
92c07f0
25883b9
 
 
 
 
 
 
 
 
 
 
92c07f0
 
25883b9
 
 
 
 
 
 
 
 
 
 
 
92c07f0
 
 
 
 
 
12a4d59
 
 
ba74db2
12a4d59
 
 
ece0ce5
12a4d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25883b9
12a4d59
ece0ce5
12a4d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e9220
12a4d59
f4e9220
 
25883b9
 
07bbfe7
 
1501900
07bbfe7
5c8c5d6
 
1501900
07bbfe7
5c8c5d6
 
07bbfe7
25883b9
 
5c8c5d6
 
25883b9
 
 
 
 
5c8c5d6
12a4d59
 
 
 
 
 
25883b9
 
 
12a4d59
 
501b516
12a4d59
 
 
501b516
25883b9
 
 
 
 
 
 
 
 
 
 
501b516
25883b9
 
12a4d59
a983c72
25883b9
 
 
 
 
 
 
 
12a4d59
 
25883b9
 
 
 
 
12a4d59
25883b9
 
 
 
 
 
 
 
 
 
 
f4e9220
25883b9
 
 
1501900
25883b9
 
 
 
12a4d59
f4e9220
25883b9
 
 
 
 
 
 
f4e9220
744ad2f
12a4d59
25883b9
1501900
12a4d59
5c8c5d6
 
12a4d59
5c8c5d6
25883b9
 
92c07f0
25883b9
92c07f0
 
 
 
 
25883b9
 
92c07f0
f4e9220
 
12a4d59
 
 
 
f4e9220
25883b9
 
92c07f0
f4e9220
12a4d59
 
 
 
a329216
25883b9
 
 
744ad2f
a329216
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import json
import os
import random
from functools import partial
from pathlib import Path
from typing import List

import deepinv as dinv
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms

from factories import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric


### Config
DEVICE_STR = 'cuda'            # run model inference on NVIDIA gpu
torch.set_grad_enabled(False)  # stops tracking values for gradients


### Gradio Utils

def generate_imgs_from_user(image,
                            model: EvalModel, baseline: BaselineModel,
                            physics: PhysicsWithGenerator, use_gen: bool,
                            metrics: List[Metric]):
    if image is None:
        return None, None, None, None, None, None, None, None

    # PIL image -> torch.Tensor
    x = transforms.ToTensor()(image).unsqueeze(0).to(DEVICE_STR)

    return generate_imgs(x, model, baseline, physics, use_gen, metrics)

def generate_imgs_from_dataset(dataset: EvalDataset, idx: int,
                               model: EvalModel, baseline: BaselineModel,
                               physics: PhysicsWithGenerator, use_gen: bool,
                               metrics: List[Metric]):
    ### Load 1 image
    x = dataset[idx]    # shape : (C, H, W)
    x = x.unsqueeze(0)  # shape : (1, C, H, W)

    return generate_imgs(x, model, baseline, physics, use_gen, metrics)

def generate_random_imgs_from_dataset(dataset: EvalDataset,
                                      model: EvalModel,
                                      baseline: BaselineModel,
                                      physics: PhysicsWithGenerator,
                                      use_gen: bool,
                                      metrics: List[Metric]):
    idx = random.randint(0, len(dataset)-1)
    x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs_from_dataset(
        dataset, idx, model, baseline, physics, use_gen, metrics
        )
    return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
    
def generate_imgs(x: torch.Tensor,
                  model: EvalModel, baseline: BaselineModel,
                  physics: PhysicsWithGenerator, use_gen: bool,
                  metrics: List[Metric]):

    with torch.no_grad():
        ### Compute y
        y = physics(x, use_gen)  # possible reduction in img shape due to Blurring

        ### Compute x_hat
        out = model(y=y, physics=physics.physics)
        out_baseline = baseline(y=y, physics=physics.physics)

        ### Process tensors before metric computation
        if "Blur" in physics.name:
            w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
            h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2

            x = x[..., w_1:w_2, h_1:h_2]
            out = out[..., w_1:w_2, h_1:h_2]
            if out_baseline.shape != out.shape:
                out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]

        ### Metrics
        metrics_y = ""
        metrics_out = ""
        metrics_out_baseline = ""
        for metric in metrics:
            if y.shape == x.shape:
                metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n"
            metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
            metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"

    ### Process y when y shape is different from x shape
    if physics.name == "MRI" in physics.name:
        y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
    else:
        y_plot = y.clone()

    ### Processing images for plotting :
    #     - clip value outside of [0,1]
    #     - shape (1, C, H, W) -> (C, H, W)
    #     - torch.Tensor object -> Pil object
    process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
    to_pil = transforms.ToPILImage()
    x = to_pil(process_img(x)[0].to('cpu'))
    y = to_pil(process_img(y_plot)[0].to('cpu'))
    out = to_pil(process_img(out)[0].to('cpu'))
    out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))

    return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline


get_list_metrics_on_DEVICE_STR = partial(Metric.get_list_metrics, device_str=DEVICE_STR)
get_eval_model_on_DEVICE_STR = partial(EvalModel, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)

AVAILABLE_PHYSICS = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
                     'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
def get_dataset(dataset_name):
    global AVAILABLE_PHYSICS
    if dataset_name == 'MRI':
        AVAILABLE_PHYSICS = ['MRI']
        baseline_name = 'DPIR_MRI'
        physics_name = 'MRI'
    elif dataset_name == 'CT':
        AVAILABLE_PHYSICS = ['CT']
        baseline_name = 'DPIR_CT'
        physics_name = 'CT'
    else:
        AVAILABLE_PHYSICS = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
                             'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
        baseline_name = 'DPIR'
        physics_name = 'MotionBlur_easy'

    dataset = get_dataset_on_DEVICE_STR(dataset_name)
    physics = get_physics_on_DEVICE_STR(physics_name)
    baseline = get_baseline_model_on_DEVICE_STR(baseline_name)
    return dataset, physics, baseline


### Gradio Blocks interface

# Define custom CSS
custom_css = """
.fixed-textbox textarea {
    height: 100px !important;  /* Adjust height to fit exactly 4 lines */
    overflow: scroll;          /* Add a scroll bar if necessary */
    resize: none;              /* User can resize vertically the textbox */
}
"""

title = "Inverse problem playground"  # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, css=custom_css) as interface:
    gr.Markdown("## " + title)

    # DEFAULT VALUES
    # Issue: giving directly a `torch.nn.module` to `gr.State(...)` since it has __call__ method
    # Solution: using lambda expression
    model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", ""))
    model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR"))
    dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
    physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy"))
    idx_placeholder = gr.State(0)

    metric_names = ["PSNR"]
    metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(metric_names))

    @gr.render(inputs=[dataset_placeholder, physics_placeholder])
    def dynamic_layout(dataset, physics):
        ### LAYOUT

        # Display images
        with gr.Row():
            gt_img = gr.Image(label=f"Ground-truth IMAGE", interactive=True)
            observed_img = gr.Image(label=f"Observed IMAGE", interactive=False)
            model_a_out = gr.Image(label="RAM OUTPUT", interactive=False)
            model_b_out = gr.Image(label="DPIR OUTPUT", interactive=False)

        # Manage datasets and display metric values
        with gr.Row():
            with gr.Column():
                run_button = gr.Button("Demo on above image")
                choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
                                          label="Datasets",
                                          value=dataset.name)
                idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index")
                with gr.Row():
                    load_button = gr.Button("Run on index image from dataset")
                    load_random_button = gr.Button("Run on random image from dataset")
            with gr.Column():
                observed_metrics = gr.Textbox(label="PSNR(Observed, Ground-truth)",
                                              elem_classes=["fixed-textbox"])
            with gr.Column():
                out_a_metric = gr.Textbox(label="PSNR(RAM(Observed, Ground-truth)",
                                          elem_classes=["fixed-textbox"])
            with gr.Column():
                out_b_metric = gr.Textbox(label="PSNR(DPIR(Observed, Ground-truth)",
                                          elem_classes=["fixed-textbox"])

        # Manage physics
        with gr.Row():
            with gr.Column(scale=1):
                choose_physics = gr.Radio(choices=AVAILABLE_PHYSICS,
                                          label="Physics",
                                          value=physics.name)
                use_generator_button = gr.Checkbox(label="Generate physics parameters during inference")
            with gr.Column(scale=1):
                with gr.Row():
                    key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
                                                label="Updatable Parameter Key")
                    value_text = gr.Textbox(label="Update Value")
                update_button = gr.Button("Manually update parameter value")
            with gr.Column(scale=2):
                physics_params = gr.Textbox(label="Physics parameters",
                                            elem_classes=["fixed-textbox"],
                                            value=physics.display_saved_params())  


        ### Event listeners

        choose_dataset.change(fn=get_dataset,
                              inputs=choose_dataset,
                              outputs=[dataset_placeholder, physics_placeholder, model_b_placeholder])
        choose_physics.change(fn=get_physics_on_DEVICE_STR,
                              inputs=choose_physics,
                              outputs=[physics_placeholder])
        update_button.click(fn=physics.update_and_display_params,
                            inputs=[key_selector, value_text], outputs=physics_params)
        run_button.click(fn=generate_imgs_from_user,
                         inputs=[gt_img,
                                 model_a_placeholder,
                                 model_b_placeholder,
                                 physics_placeholder,
                                 use_generator_button,
                                 metrics_placeholder],
                         outputs=[gt_img, observed_img, model_a_out, model_b_out,
                                  physics_params, observed_metrics, out_a_metric, out_b_metric])
        load_button.click(fn=generate_imgs_from_dataset,
                          inputs=[dataset_placeholder,
                                  idx_slider,
                                  model_a_placeholder,
                                  model_b_placeholder,
                                  physics_placeholder,
                                  use_generator_button,
                                  metrics_placeholder],
                          outputs=[gt_img, observed_img, model_a_out, model_b_out,
                                   physics_params, observed_metrics, out_a_metric, out_b_metric])
        load_random_button.click(fn=generate_random_imgs_from_dataset,
                                 inputs=[dataset_placeholder,
                                         model_a_placeholder,
                                         model_b_placeholder,
                                         physics_placeholder,
                                         use_generator_button,
                                         metrics_placeholder],
                                 outputs=[idx_slider, gt_img, observed_img, model_a_out, model_b_out,
                                          physics_params, observed_metrics, out_a_metric, out_b_metric])


interface.launch()