Spaces:
Starting
on
T4
Starting
on
T4
File size: 12,018 Bytes
12a4d59 52893ae 12a4d59 52893ae 12a4d59 25883b9 12a4d59 25883b9 33dc149 12a4d59 92c07f0 e35108e 92c07f0 25883b9 92c07f0 25883b9 92c07f0 12a4d59 ba74db2 12a4d59 ece0ce5 12a4d59 25883b9 12a4d59 ece0ce5 12a4d59 f4e9220 12a4d59 f4e9220 25883b9 07bbfe7 1501900 07bbfe7 5c8c5d6 1501900 07bbfe7 5c8c5d6 07bbfe7 25883b9 5c8c5d6 25883b9 5c8c5d6 12a4d59 25883b9 12a4d59 501b516 12a4d59 501b516 25883b9 501b516 25883b9 12a4d59 a983c72 25883b9 12a4d59 25883b9 12a4d59 25883b9 f4e9220 25883b9 1501900 25883b9 12a4d59 f4e9220 25883b9 f4e9220 744ad2f 12a4d59 25883b9 1501900 12a4d59 5c8c5d6 12a4d59 5c8c5d6 25883b9 92c07f0 25883b9 92c07f0 25883b9 92c07f0 f4e9220 12a4d59 f4e9220 25883b9 92c07f0 f4e9220 12a4d59 a329216 25883b9 744ad2f a329216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import json
import os
import random
from functools import partial
from pathlib import Path
from typing import List
import deepinv as dinv
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from factories import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric
### Config
DEVICE_STR = 'cuda' # run model inference on NVIDIA gpu
torch.set_grad_enabled(False) # stops tracking values for gradients
### Gradio Utils
def generate_imgs_from_user(image,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
if image is None:
return None, None, None, None, None, None, None, None
# PIL image -> torch.Tensor
x = transforms.ToTensor()(image).unsqueeze(0).to(DEVICE_STR)
return generate_imgs(x, model, baseline, physics, use_gen, metrics)
def generate_imgs_from_dataset(dataset: EvalDataset, idx: int,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
### Load 1 image
x = dataset[idx] # shape : (C, H, W)
x = x.unsqueeze(0) # shape : (1, C, H, W)
return generate_imgs(x, model, baseline, physics, use_gen, metrics)
def generate_random_imgs_from_dataset(dataset: EvalDataset,
model: EvalModel,
baseline: BaselineModel,
physics: PhysicsWithGenerator,
use_gen: bool,
metrics: List[Metric]):
idx = random.randint(0, len(dataset)-1)
x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs_from_dataset(
dataset, idx, model, baseline, physics, use_gen, metrics
)
return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
def generate_imgs(x: torch.Tensor,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
with torch.no_grad():
### Compute y
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
### Compute x_hat
out = model(y=y, physics=physics.physics)
out_baseline = baseline(y=y, physics=physics.physics)
### Process tensors before metric computation
if "Blur" in physics.name:
w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2
x = x[..., w_1:w_2, h_1:h_2]
out = out[..., w_1:w_2, h_1:h_2]
if out_baseline.shape != out.shape:
out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]
### Metrics
metrics_y = ""
metrics_out = ""
metrics_out_baseline = ""
for metric in metrics:
if y.shape == x.shape:
metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n"
metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"
### Process y when y shape is different from x shape
if physics.name == "MRI" in physics.name:
y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
else:
y_plot = y.clone()
### Processing images for plotting :
# - clip value outside of [0,1]
# - shape (1, C, H, W) -> (C, H, W)
# - torch.Tensor object -> Pil object
process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
to_pil = transforms.ToPILImage()
x = to_pil(process_img(x)[0].to('cpu'))
y = to_pil(process_img(y_plot)[0].to('cpu'))
out = to_pil(process_img(out)[0].to('cpu'))
out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))
return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline
get_list_metrics_on_DEVICE_STR = partial(Metric.get_list_metrics, device_str=DEVICE_STR)
get_eval_model_on_DEVICE_STR = partial(EvalModel, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)
AVAILABLE_PHYSICS = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
def get_dataset(dataset_name):
global AVAILABLE_PHYSICS
if dataset_name == 'MRI':
AVAILABLE_PHYSICS = ['MRI']
baseline_name = 'DPIR_MRI'
physics_name = 'MRI'
elif dataset_name == 'CT':
AVAILABLE_PHYSICS = ['CT']
baseline_name = 'DPIR_CT'
physics_name = 'CT'
else:
AVAILABLE_PHYSICS = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard',
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
baseline_name = 'DPIR'
physics_name = 'MotionBlur_easy'
dataset = get_dataset_on_DEVICE_STR(dataset_name)
physics = get_physics_on_DEVICE_STR(physics_name)
baseline = get_baseline_model_on_DEVICE_STR(baseline_name)
return dataset, physics, baseline
### Gradio Blocks interface
# Define custom CSS
custom_css = """
.fixed-textbox textarea {
height: 100px !important; /* Adjust height to fit exactly 4 lines */
overflow: scroll; /* Add a scroll bar if necessary */
resize: none; /* User can resize vertically the textbox */
}
"""
title = "Inverse problem playground" # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, css=custom_css) as interface:
gr.Markdown("## " + title)
# DEFAULT VALUES
# Issue: giving directly a `torch.nn.module` to `gr.State(...)` since it has __call__ method
# Solution: using lambda expression
model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", ""))
model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR"))
dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy"))
idx_placeholder = gr.State(0)
metric_names = ["PSNR"]
metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(metric_names))
@gr.render(inputs=[dataset_placeholder, physics_placeholder])
def dynamic_layout(dataset, physics):
### LAYOUT
# Display images
with gr.Row():
gt_img = gr.Image(label=f"Ground-truth IMAGE", interactive=True)
observed_img = gr.Image(label=f"Observed IMAGE", interactive=False)
model_a_out = gr.Image(label="RAM OUTPUT", interactive=False)
model_b_out = gr.Image(label="DPIR OUTPUT", interactive=False)
# Manage datasets and display metric values
with gr.Row():
with gr.Column():
run_button = gr.Button("Demo on above image")
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
label="Datasets",
value=dataset.name)
idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index")
with gr.Row():
load_button = gr.Button("Run on index image from dataset")
load_random_button = gr.Button("Run on random image from dataset")
with gr.Column():
observed_metrics = gr.Textbox(label="PSNR(Observed, Ground-truth)",
elem_classes=["fixed-textbox"])
with gr.Column():
out_a_metric = gr.Textbox(label="PSNR(RAM(Observed, Ground-truth)",
elem_classes=["fixed-textbox"])
with gr.Column():
out_b_metric = gr.Textbox(label="PSNR(DPIR(Observed, Ground-truth)",
elem_classes=["fixed-textbox"])
# Manage physics
with gr.Row():
with gr.Column(scale=1):
choose_physics = gr.Radio(choices=AVAILABLE_PHYSICS,
label="Physics",
value=physics.name)
use_generator_button = gr.Checkbox(label="Generate physics parameters during inference")
with gr.Column(scale=1):
with gr.Row():
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
label="Updatable Parameter Key")
value_text = gr.Textbox(label="Update Value")
update_button = gr.Button("Manually update parameter value")
with gr.Column(scale=2):
physics_params = gr.Textbox(label="Physics parameters",
elem_classes=["fixed-textbox"],
value=physics.display_saved_params())
### Event listeners
choose_dataset.change(fn=get_dataset,
inputs=choose_dataset,
outputs=[dataset_placeholder, physics_placeholder, model_b_placeholder])
choose_physics.change(fn=get_physics_on_DEVICE_STR,
inputs=choose_physics,
outputs=[physics_placeholder])
update_button.click(fn=physics.update_and_display_params,
inputs=[key_selector, value_text], outputs=physics_params)
run_button.click(fn=generate_imgs_from_user,
inputs=[gt_img,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
load_button.click(fn=generate_imgs_from_dataset,
inputs=[dataset_placeholder,
idx_slider,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
load_random_button.click(fn=generate_random_imgs_from_dataset,
inputs=[dataset_placeholder,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[idx_slider, gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
interface.launch()
|