Spaces:
Running
on
T4
Running
on
T4
File size: 14,052 Bytes
4dc3e99 1eb9e66 4dc3e99 b6d8eef 4dc3e99 b6d8eef 4dc3e99 a0ca102 4dc3e99 a0ca102 499f595 ff76a8d 4dc3e99 4e6590f 92dc96b 499f595 92dc96b 499f595 0fb7549 499f595 a0ca102 4e6590f a0ca102 4e6590f a0ca102 4e6590f 6f0291c a0ca102 499f595 a0ca102 92dc96b 499f595 a0ca102 499f595 a0ca102 499f595 a0ca102 92dc96b 499f595 92dc96b 384859e 1eb9e66 384859e 1eb9e66 384859e 1eb9e66 384859e 1eb9e66 6f0291c 35c18b7 6f0291c 1eb9e66 384859e 1eb9e66 6f0291c 1eb9e66 384859e 4dc3e99 2776aea 4dc3e99 2776aea f3bcaf9 2776aea 384859e 4dc3e99 2776aea 4dc3e99 3a575e4 499f595 3a575e4 4e7aed4 01bc330 1eb9e66 ff64068 1eb9e66 01bc330 1eb9e66 ff64068 1eb9e66 4e7aed4 88d3587 a0ca102 88d3587 1eb9e66 a0ca102 1eb9e66 a0ca102 1eb9e66 ff64068 4dc3e99 499f595 81c09b8 384859e 499f595 384859e 9eb8ea4 384859e 4dc3e99 906193d 4dc3e99 0e089a6 499f595 a0ca102 c7ae131 1eb9e66 499f595 c7ae131 499f595 a0ca102 384859e 9eb8ea4 4e6590f 1eb9e66 a0ca102 499f595 2776aea 499f595 a0ca102 4dc3e99 e0ec252 a0ca102 2776aea 4dc3e99 e0ec252 384859e e0ec252 384859e e0ec252 384859e 3a575e4 a0ca102 1eb9e66 a0ca102 2776aea a0ca102 4dc3e99 3a575e4 499f595 a0ca102 499f595 a0ca102 109f096 a0ca102 3a575e4 4dc3e99 a0ca102 01bc330 4dc3e99 1eb9e66 ff64068 4dc3e99 ff64068 a0ca102 499f595 a0ca102 92dc96b 499f595 a0ca102 499f595 3a575e4 4dc3e99 499f595 a0ca102 499f595 3a575e4 4dc3e99 499f595 a0ca102 288f88f 499f595 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import random
import time
from functools import partial
from typing import List
import deepinv as dinv
import gradio as gr
import torch
from torchvision import transforms
from factories import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric
### Config
# run model inference on NVIDIA gpu if available
DEVICE_STR = 'cuda' if torch.cuda.is_available() else 'cpu'
### Gradio Utils
def resize_tensor_within_box(tensor_img: torch.Tensor, max_size: int = 512):
_, _, h, w = tensor_img.shape
scale = min(max_size / h, max_size / w)
if scale < 1.0:
new_h, new_w = int(h * scale), int(w * scale)
tensor_img = transforms.functional.resize(tensor_img, [new_h, new_w], antialias=True)
return tensor_img
def generate_imgs_from_user(image,
physics: PhysicsWithGenerator, use_gen: bool,
baseline: BaselineModel, model: EvalModel,
metrics: List[Metric]):
# Happens when user image is missing
if image is None:
return None, None, None, None, None, None, None, None
# PIL image -> torch.Tensor / (1, C, H, W) / move to DEVICE_STR
x = transforms.ToTensor()(image).unsqueeze(0).to(DEVICE_STR)
# Resize img within a 512x512 box
x = resize_tensor_within_box(x)
C = x.shape[1]
if C == 3 and physics.name == 'CT':
x = transforms.Grayscale(num_output_channels=1)(x)
elif C == 3 and physics.name == 'MRI': # not working because MRI physics has a fixed img size
x = transforms.Grayscale(num_output_channels=1)(x)
x = torch.cat((x, torch.zeros_like(x)), dim=1)
return generate_imgs(x, physics, use_gen, baseline, model, metrics)
def generate_imgs_from_dataset(dataset: EvalDataset, idx: int,
physics: PhysicsWithGenerator, use_gen: bool,
baseline: BaselineModel, model: EvalModel,
metrics: List[Metric]):
### Load 1 image
x = dataset[idx] # shape : (C, H, W)
x = x.unsqueeze(0) # shape : (1, C, H, W)
return generate_imgs(x, physics, use_gen, baseline, model, metrics)
def generate_random_imgs_from_dataset(dataset: EvalDataset,
physics: PhysicsWithGenerator,
use_gen: bool,
baseline: BaselineModel,
model: EvalModel,
metrics: List[Metric]):
idx = random.randint(0, len(dataset)-1)
x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs_from_dataset(
dataset, idx, physics, use_gen, baseline, model, metrics
)
return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
def generate_imgs(x: torch.Tensor,
physics: PhysicsWithGenerator, use_gen: bool,
baseline: BaselineModel, model: EvalModel,
metrics: List[Metric]):
print(f"[Before inference] CUDA current allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"[Before inference] CUDA current reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
print(f"[Before inference] CUDA max allocated: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
print(f"[Before inference] CUDA max reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f} MB")
### Compute y
with torch.no_grad():
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
### Compute x_hat from RAM & DPIR
ram_time = time.time()
with torch.no_grad():
out = model(y=y, physics=physics.physics)
ram_time = time.time() - ram_time
dpir_time = time.time()
with torch.no_grad():
out_baseline = baseline(y=y, physics=physics.physics)
dpir_time = time.time() - dpir_time
### Process tensors before metric computation
if "Blur" in physics.name:
w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2
x = x[..., w_1:w_2, h_1:h_2]
out = out[..., w_1:w_2, h_1:h_2]
if out_baseline.shape != out.shape:
out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]
### Process y when y shape is different from x shape
if physics.name == 'MRI' or physics.name == 'CT':
y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
else:
y_plot = y.clone()
### Metrics
metrics_y = ""
metrics_out = ""
metrics_out_baseline = ""
for metric in metrics:
#if y.shape == x.shape:
metrics_y += f"{metric.name} = {metric(y_plot, x).item():.4f}" + "\n"
metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"
metrics_out += f"Inference time = {ram_time:.3f}s"
metrics_out_baseline += f"Inference time = {dpir_time:.3f}s"
### Processing images for plotting :
# - clip value outside of [0,1]
# - shape (1, C, H, W) -> (C, H, W)
# - torch.Tensor object -> Pil object
process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
to_pil = transforms.ToPILImage()
x_pil = to_pil(process_img(x)[0].to('cpu'))
y_pil = to_pil(process_img(y_plot)[0].to('cpu'))
out_pil = to_pil(process_img(out)[0].to('cpu'))
out_baseline_pil = to_pil(process_img(out_baseline)[0].to('cpu'))
### Free memory
del x, y, out, out_baseline, y_plot
torch.cuda.empty_cache()
print(f"[After inference] CUDA current allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"[After inference] CUDA current reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
print(f"[After inference] CUDA max allocated: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
print(f"[After inference] CUDA max reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f} MB")
return x_pil, y_pil, out_pil, out_baseline_pil, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
def get_dataset(dataset_name):
if dataset_name == 'MRI':
available_physics = ['MRI']
physics_name = 'MRI'
baseline_name = 'DPIR_MRI'
elif dataset_name == 'CT':
available_physics = ['CT']
physics_name = 'CT'
baseline_name = 'DPIR_CT'
else:
available_physics = ['MotionBlur_medium', 'MotionBlur_hard',
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
physics_name = 'MotionBlur_hard'
baseline_name = 'DPIR'
dataset = get_dataset_on_DEVICE_STR(dataset_name)
idx = 0
physics = get_physics_on_DEVICE_STR(physics_name)
baseline = get_baseline_model_on_DEVICE_STR(baseline_name)
return dataset, idx, physics, baseline, available_physics
# global variables shared by all users
ram_model = EvalModel(device_str=DEVICE_STR)
ram_model.eval()
psnr = Metric.get_list_metrics(["PSNR"], device_str=DEVICE_STR)
generate_imgs_from_user_partial = partial(generate_imgs_from_user, model=ram_model, metrics=psnr)
generate_imgs_from_dataset_partial = partial(generate_imgs_from_dataset, model=ram_model, metrics=psnr)
generate_random_imgs_from_dataset_partial = partial(generate_random_imgs_from_dataset, model=ram_model, metrics=psnr)
### Gradio Blocks interface
print(f"[Init] CUDA max allocated: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
print(f"[Init] CUDA max reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f} MB")
title = "Inverse problem playground" # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, theme=gr.themes.Glass()) as interface:
gr.Markdown("## " + title)
### USER-SPECIFIC VARIABLES
dataset_placeholder = gr.State(get_dataset_on_DEVICE_STR("Natural"))
available_physics_placeholder = gr.State(['MotionBlur_medium', 'MotionBlur_hard',
'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard'])
# Issue giving directly a `torch.nn.module` to `gr.State(...)` since it has __call__ method
# Solution: using lambda expression
physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_medium"))
model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR"))
print(f"[Render] CUDA max allocated: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
print(f"[Render] CUDA max reserved: {torch.cuda.max_memory_reserved() / 1024**2:.2f} MB")
@gr.render(inputs=[dataset_placeholder, physics_placeholder, available_physics_placeholder],
triggers=[dataset_placeholder.change, physics_placeholder.change])
def dynamic_layout(dataset, physics, available_physics):
### LAYOUT
# Display images
with gr.Row():
gt_img = gr.Image(label="Ground-truth image", interactive=True, key='gt_img')
observed_img = gr.Image(label="Observed image", interactive=False, key='observed_img')
model_a_out = gr.Image(label="RAM output", interactive=False, key='ram_out')
model_b_out = gr.Image(label="DPIR output", interactive=False, key='dpir_out')
# Manage datasets and display metric values
with gr.Row():
with gr.Column(scale=1, min_width=160):
run_button = gr.Button("Demo on above image", size='md')
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
label="Datasets",
value=dataset.name)
idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", key='idx_slider')
with gr.Row():
load_button = gr.Button("Run on index image from dataset", size='md')
load_random_button = gr.Button("Run on random image from dataset", size='md')
with gr.Column(scale=1, min_width=160):
observed_metrics = gr.Textbox(label="Observed metric", lines=2, key='metrics')
with gr.Column(scale=1, min_width=160):
out_a_metric = gr.Textbox(label="RAM output metrics", lines=2, key='ram_metrics')
with gr.Column(scale=1, min_width=160):
out_b_metric = gr.Textbox(label="DPIR output metrics", lines=2, key='dpir_metrics')
# Manage physics
with gr.Row():
with gr.Column(scale=1):
choose_physics = gr.Radio(choices=available_physics,
label="Physics",
value=physics.name)
use_generator_button = gr.Checkbox(label="Generate physics parameters during inference", value=True, key='use_gen')
with gr.Column(scale=1):
with gr.Row():
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
label="Updatable Key")
value_text = gr.Textbox(label="Update Value")
update_button = gr.Button("Manually update parameter value", size='md')
with gr.Column(scale=2):
physics_params = gr.Textbox(label="Physics parameters",
lines=5,
value=physics.display_saved_params())
### Event listeners
choose_dataset.change(fn=get_dataset,
inputs=choose_dataset,
outputs=[dataset_placeholder, idx_slider, physics_placeholder, model_b_placeholder, available_physics_placeholder])
choose_physics.change(fn=get_physics_on_DEVICE_STR,
inputs=choose_physics,
outputs=[physics_placeholder])
update_button.click(fn=physics.update_and_display_params,
inputs=[key_selector, value_text], outputs=physics_params)
run_button.click(fn=generate_imgs_from_user_partial,
inputs=[gt_img,
physics_placeholder,
use_generator_button,
model_b_placeholder],
outputs=[gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
load_button.click(fn=generate_imgs_from_dataset_partial,
inputs=[dataset_placeholder,
idx_slider,
physics_placeholder,
use_generator_button,
model_b_placeholder],
outputs=[gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
load_random_button.click(fn=generate_random_imgs_from_dataset_partial,
inputs=[dataset_placeholder,
physics_placeholder,
use_generator_button,
model_b_placeholder],
outputs=[idx_slider, gt_img, observed_img, model_a_out, model_b_out,
physics_params, observed_metrics, out_a_metric, out_b_metric])
interface.launch() |