openai-demo / app.py
isanders's picture
✨ Theme & layout
bc99a91
import gradio as gr
import requests
from theme import logo, theme
DEFAULT_DEPLOYMENT_URL = "https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/a0a5d36d-ede6-4c53-8705-e4a8727bb0b7/predict"
DEFAULT_PROMPTS = [
["What are requirements for a high-risk AI system?"],
["Can you help me understand AI content moderation guidelines and limitations?"],
]
MAX_TOKENS = 800
TEMPERATURE = 0.7
TOP_P = 0.95
ERROR_401 = "Error: Invalid Deployment token"
ERROR_403 = "Error: No valid permissions for this Deployment token"
ERROR_404 = "Error: Deployment not found. Check the API URL."
indexed_prediction_log_ids = {}
def respond(
message: str,
history: list,
api_url: str,
deployment_token: str,
):
formatted_history = []
if history and isinstance(history[0], list):
for user_msg, assistant_msg in history:
if user_msg:
formatted_history.append(message_from_user(user_msg))
if assistant_msg:
formatted_history.append(message_from_assistant(assistant_msg))
else:
formatted_history = history
messages = [message_from_system("Your are a friendly Chatbot.")]
messages.extend(formatted_history)
if message:
messages.append(message_from_user(message))
headers = get_headers(deployment_token)
payload = get_prediction_payload(messages)
predict_url = get_predict_url(api_url)
response = requests.post(predict_url, json=payload, headers=headers)
new_history = formatted_history.copy()
if message:
new_history.append(message_from_user(message))
if response.status_code != 201:
append_error_to_history(new_history, response)
return new_history
try:
response_data = response.json()
if isinstance(response_data, dict) and "choices" in response_data:
if (
len(response_data["choices"]) > 0
and "message" in response_data["choices"][0]
):
content = response_data["choices"][0]["message"].get("content", "")
prediction_log_id = response_data["predictionLogIds"][0]
indexed_prediction_log_ids[len(new_history)] = prediction_log_id
new_history.append(message_from_assistant(content))
return new_history
else:
new_history.append(
message_from_assistant(
f"Error: Unexpected response format: {response_data}"
)
)
return new_history
except Exception as error:
new_history.append(
message_from_assistant(f"Error parsing API response: {str(error)}")
)
return new_history
def evaluate(
like_data: gr.LikeData,
api_url: str,
deployment_token: str,
) -> str | None:
prediction_log_id = indexed_prediction_log_ids.get(like_data.index)
headers = get_headers(deployment_token)
evaluate_url = get_evaluation_url(api_url, prediction_log_id)
evaluation_payload = get_evaluation_payload(like_data.liked)
response = requests.post(evaluate_url, json=evaluation_payload, headers=headers)
if response.status_code != 201:
error_msg = "Error: Failed to evaluate the prediction, does your token have the right permissions?"
return error_msg
def get_prediction_payload(messages: list) -> dict:
return {
"messages": messages,
"max_tokens": MAX_TOKENS,
"temperature": TEMPERATURE,
"top_p": TOP_P,
}
def get_evaluation_payload(liked: bool) -> dict:
if liked:
return {"agree": True, "comment": "Clicked thumbs up in the chat"}
else:
return {
"agree": False,
"comment": "Clicked thumbs down in the chat",
"desiredOutput": {"predictions": ["A new example output"]},
}
def get_headers(bearer_token: str) -> dict:
return {
"Authorization": f"Bearer {bearer_token}",
"Content-Type": "application/json",
}
def append_error_to_history(history: list, response: requests.Response) -> None:
if response.status_code == 401:
history.append(message_from_assistant(ERROR_401))
elif response.status_code == 403:
history.append(message_from_assistant(ERROR_403))
elif response.status_code == 404:
history.append(message_from_assistant(ERROR_404))
else:
history.append(
message_from_assistant(
f"Error: API returned status code {response.status_code}"
)
)
def message_from_assistant(message: str) -> dict:
return {"role": "assistant", "content": message}
def message_from_user(message: str) -> dict:
return {"role": "user", "content": message}
def message_from_system(message: str) -> dict:
return {"role": "system", "content": message}
def get_base_url(url: str) -> str:
if url.endswith("/predict"):
return url.split("/predict")[0]
else:
if url.endswith("/"):
return url[:-1]
else:
return url
def get_predict_url(url: str) -> str:
return get_base_url(url) + "/predict"
def get_evaluation_url(url: str, prediction_log_id: str) -> str:
return (
get_base_url(url)
+ "/predictionLogs/"
+ prediction_log_id
+ "/evaluatePrediction"
)
with gr.Blocks(theme=theme, mode="light") as demo:
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
gr.HTML(f"""
<div style="display: flex; align-items: center; column-gap: 8px;">
{logo}
<h1 style="margin: 0;">Deeploy OpenAI</h1>
</div>
""")
api_url = gr.Textbox(
value=DEFAULT_DEPLOYMENT_URL, label="Deeploy API URL", type="text"
)
deployment_token = gr.Textbox(label="Deployment token", type="password")
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=600,
type="messages",
render_markdown=True,
show_copy_button=True,
)
msg = gr.Textbox(
label="Message",
placeholder="Type your message here...",
show_label=False,
submit_btn="Send",
)
gr.Examples(
examples=DEFAULT_PROMPTS,
inputs=[msg],
)
msg.submit(
respond,
inputs=[msg, chatbot, api_url, deployment_token],
outputs=chatbot,
).then(lambda: "", None, msg, queue=False)
error_output = gr.Textbox(visible=False)
chatbot.like(
evaluate,
inputs=[api_url, deployment_token],
outputs=[error_output],
like_user_message=False,
).success(
lambda msg: gr.Info(msg) if msg else None,
[error_output],
None,
)
if __name__ == "__main__":
demo.launch()