Spaces:
Sleeping
Sleeping
File size: 1,055 Bytes
37d8430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
##importing the libraries
import numpy as np
import pandas as pd
from PIL import Image
import cv2
import tensorflow as tf
import os
import matplotlib.pyplot as plt
%matplotlib inline
from tensorflow.keras.models import load_model
import gradio as gr
# Load your trained model
model = load_model('tb_pretrained.h5')
### Preprocess the new image
def predict_image(test_image):
# img = cv2.imread(test_image)
img = np.array(test_image)
image_1 = tf.image.resize(img, (256,256))
image_processed = np.expand_dims(image_1/256, 0)
##prediction
yhat = model.predict(image_processed)
## setting a threshold
if yhat[0][1] > 0.70:
return (f'There is {round((yhat[0][1])*100,2)}% chance of the image being normal')
elif yhat[0][0] > 0.9:
return (f'There is {round((yhat[0][0])*100,2)}% chance of an abnormality either than TB being present')
else:
return (f'There is a chance of TB being present')
gr.Interface(predict_image, "image", "label").launch(debug=True, share=True) |