Spaces:
Sleeping
Sleeping
import gradio as gr | |
from sentence_transformers import SentenceTransformer, util | |
import openai | |
import os | |
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# Initialize paths and model identifiers for easy configuration and maintenance | |
filename = "output_chess_details.txt" # Path to the file storing chess-specific details | |
retrieval_model_name = 'output/sentence-transformer-finetuned/' | |
openai.api_key = os.environ["OPENAI_API_KEY"] | |
# Attempt to load the necessary models and provide feedback on success or failure | |
try: | |
retrieval_model = SentenceTransformer(retrieval_model_name) | |
print("Models loaded successfully.") | |
except Exception as e: | |
print(f"Failed to load models: {e}") | |
def load_and_preprocess_text(filename): | |
""" | |
Load and preprocess text from a file, removing empty lines and stripping whitespace. | |
""" | |
try: | |
with open(filename, 'r', encoding='utf-8') as file: | |
segments = [line.strip() for line in file if line.strip()] | |
print("Text loaded and preprocessed successfully.") | |
return segments | |
except Exception as e: | |
print(f"Failed to load or preprocess text: {e}") | |
return [] | |
segments = load_and_preprocess_text(filename) | |
def find_relevant_segment(user_query, segments): | |
""" | |
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings. | |
This version tries to match country names in the query with those in the segments. | |
""" | |
try: | |
# Lowercase the query for better matching | |
lower_query = user_query.lower() | |
# Filter segments to include only those containing country names mentioned in the query | |
country_segments = [seg for seg in segments if any(country.lower() in seg.lower() for country in ['Guatemala', 'Mexico', 'U.S.', 'United States'])] | |
# If no specific country segments found, default to general matching | |
if not country_segments: | |
country_segments = segments | |
query_embedding = retrieval_model.encode(lower_query) | |
segment_embeddings = retrieval_model.encode(country_segments) | |
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0] | |
best_idx = similarities.argmax() | |
return country_segments[best_idx] | |
except Exception as e: | |
print(f"Error in finding relevant segment: {e}") | |
return "" | |
def generate_response(user_query, relevant_segment): | |
""" | |
Generate a response emphasizing the bot's capability in providing country-specific visa information. | |
""" | |
try: | |
system_message = "You are a chess chatbot specialized in providing information on chess rules, strategies, and terminology." | |
user_message = f"Here's the information on visa requirements for your query: {relevant_segment}" | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": user_message} | |
] | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", # Verify model name | |
messages=messages, | |
max_tokens=150, | |
temperature=0.2, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
return response['choices'][0]['message']['content'].strip() | |
except Exception as e: | |
print(f"Error in generating response: {e}") | |
return f"Error in generating response: {e}" | |
# Define and configure the Gradio application interface to interact with users. | |
# Define and configure the Gradio application interface to interact with users. | |
def query_model(question): | |
""" | |
Process a question, find relevant information, and generate a response. | |
""" | |
if question == "": | |
return "Welcome to ChessBot! Ask me anything about chess rules, strategies, and terminology." | |
relevant_segment = find_relevant_segment(question, segments) | |
if not relevant_segment: | |
return "Could not find specific information. Please refine your question." | |
response = generate_response(question, relevant_segment) | |
return response | |
# Define the welcome message and specific topics and countries the chatbot can provide information about. | |
welcome_message = """ | |
# Welcome to ChessBot! | |
## Your AI-driven assistant for all chess-related queries. | |
""" | |
topics = """ | |
### Feel Free to ask me anything from the topics below! | |
- Chess piece movements | |
- Special moves | |
- Game phases | |
- Common strategies | |
- Chess terminology | |
- Famous games | |
- Chess tactics | |
""" | |
# Define and configure the Gradio application interface to interact with users. | |
def query_model(question): | |
""" | |
Process a question, find relevant information, and generate a response. | |
Args: | |
question (str): User input question. | |
Returns: | |
str: Generated response or a default welcome message if no question is provided. | |
""" | |
if question == "": | |
return welcome_message | |
relevant_segment = find_relevant_segment(question, segments) | |
response = generate_response(question, relevant_segment) | |
return response | |
# Setup the Gradio Blocks interface with custom layout components | |
with gr.Blocks() as demo: | |
gr.Markdown(welcome_message) # Display the formatted welcome message | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(topics) # Show the topics on the left side | |
with gr.Row(): | |
img = gr.Image(os.path.join(os.getcwd(), "chess-chatbot-image.jpeg"), width=500) # Include an image for visual appeal | |
with gr.Row(): | |
with gr.Column(): | |
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?") | |
answer = gr.Textbox(label="ChessBot Response", placeholder="ChessBot will respond here...", interactive=False, lines=10) | |
submit_button = gr.Button("Submit") | |
submit_button.click(fn=query_model, inputs=question, outputs=answer) | |
# Launch the Gradio app to allow user interaction | |
demo.launch(share=True) | |